論文の概要: BrightVAE: Luminosity Enhancement in Underexposed Endoscopic Images
- arxiv url: http://arxiv.org/abs/2411.14663v1
- Date: Fri, 22 Nov 2024 01:41:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:22.453717
- Title: BrightVAE: Luminosity Enhancement in Underexposed Endoscopic Images
- Title(参考訳): BrightVAE : 未露出内視鏡画像における光度増強
- Authors: Farzaneh Koohestani, Zahra Nabizadeh, Nader Karimi, Shahram Shirani, Shadrokh Samavi,
- Abstract要約: 過度に露出した内視鏡画像は、コントラストの低下と不均一な明るさに悩まされることが多い。
階層型ベクトル量子変分オートエンコーダ(階層型VQ-VAE)に基づくアーキテクチャであるBrightVAEを紹介する。
私たちのアーキテクチャは、内視鏡画像に固有のユニークな課題に取り組むために慎重に設計されています。
- 参考スコア(独自算出の注目度): 6.687072439993227
- License:
- Abstract: The enhancement of image luminosity is especially critical in endoscopic images. Underexposed endoscopic images often suffer from reduced contrast and uneven brightness, significantly impacting diagnostic accuracy and treatment planning. Internal body imaging is challenging due to uneven lighting and shadowy regions. Enhancing such images is essential since precise image interpretation is crucial for patient outcomes. In this paper, we introduce BrightVAE, an architecture based on the hierarchical Vector Quantized Variational Autoencoder (hierarchical VQ-VAE) tailored explicitly for enhancing luminosity in low-light endoscopic images. Our architecture is meticulously designed to tackle the unique challenges inherent in endoscopic imaging, such as significant variations in illumination and obscured details due to poor lighting conditions. The proposed model emphasizes advanced feature extraction from three distinct viewpoints-incorporating various receptive fields, skip connections, and feature attentions to robustly enhance image quality and support more accurate medical diagnoses. Through rigorous experimental analysis, we demonstrate the effectiveness of these techniques in enhancing low-light endoscopic images. To evaluate the performance of our architecture, we employ three widely recognized metrics-SSIM, PSNR, and LPIPS-specifically on Endo4IE dataset, which consists of endoscopic images. We evaluated our method using the Endo4IE dataset, which consists exclusively of endoscopic images, and showed significant advancements over the state-of-the-art methods for enhancing luminosity in endoscopic imaging.
- Abstract(参考訳): 画像光度の向上は特に内視鏡画像において重要である。
過度に露出した内視鏡画像は、コントラストの低下と明るさの均一さに悩まされ、診断精度と治療計画に大きな影響を及ぼす。
内部イメージングは、不均一な照明と影の領域のために困難である。
正確な画像解釈は患者の結果に不可欠であるため、そのような画像の強調は不可欠である。
本稿では,低照度内視鏡像の輝度向上を目的とした階層型ベクトル量子変分オートエンコーダ(階層型VQ-VAE)に基づくアーキテクチャであるBrightVAEを紹介する。
私たちのアーキテクチャは、照明条件の悪さによる照明の顕著な変化や詳細の曖昧さなど、内視鏡画像に固有の課題に慎重に対処するために設計されています。
提案モデルは, 様々な受容領域を取り入れ, 接続をスキップし, 画像品質を向上し, より正確な診断を支援する特徴を特徴として, 3つの異なる視点からの高度な特徴抽出に重点を置いている。
厳密な実験分析を通じて,低照度内視鏡画像の高精細化におけるこれらの手法の有効性を実証する。
本研究では,SSIM,PSNR,LPIPSの3つを内視鏡画像からなるEndo4IEデータセットに用いた。
内視鏡画像のみからなるEndo4IEデータセットを用いて本手法の評価を行い, 内視鏡画像における光度向上のための最先端の手法に有意な進歩を示した。
関連論文リスト
- Depth-Aware Endoscopic Video Inpainting [11.885452717243744]
ビデオのインペイントは、破壊されたビデオコンテンツに、もっともらしい代替品を埋める。
近年の内視鏡的映像の塗布は, 内視鏡的映像の質を高める可能性を示している。
主に臨床参照のために重要な3次元空間的詳細を保存することなく2次元視覚情報を修復する。
本稿では,新しいDepth-awareendoscopic Video Inpaintingフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:28:36Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multi-Scale Structural-aware Exposure Correction for Endoscopic Imaging [0.879504058268139]
このコントリビューションはLMSPECの目的関数の拡張であり、これはもともと自然のシーンからの画像を強化するために導入された方法である。
ここでは、内視鏡画像における露出補正と構造情報の保存に使用される。
Endo4IEデータセット上でテストされ、提案された実装は、オーバーエクスプロイトされた画像に対してそれぞれ4.40%と4.21%のSSIM増加を得た。
論文 参考訳(メタデータ) (2022-10-26T21:04:54Z) - A Novel Hybrid Endoscopic Dataset for Evaluating Machine Learning-based
Photometric Image Enhancement Models [0.9236074230806579]
本研究は, 生成逆数的手法により生成される新しい合成データ集合を導入する。
また、過度の露光および過度の露光条件において、浅いベースと深層学習に基づく画像強調法の両方を探索する。
論文 参考訳(メタデータ) (2022-07-06T01:47:17Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z) - Self-Supervised Monocular Depth and Ego-Motion Estimation in Endoscopy:
Appearance Flow to the Rescue [38.168759071532676]
単眼ビデオから深度とエゴモーションを計算するために,自己教師付き学習技術が応用されている。
本研究では,明るさの不整合問題に対処するため,外観フローと呼ばれる新しい概念を導入する。
我々は,単眼深度と自我運動を同時に推定する統合的な自己監督フレームワークを構築した。
論文 参考訳(メタデータ) (2021-12-15T13:51:10Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
網膜画像の画質は、眼の病変や不完全な画像処理のために臨床的に不満足であることが多い。
網膜画像における最も難しい品質劣化問題の1つは、一様でない照明である。
我々はNuI-Goと呼ばれる網膜画像に対する均一でない照明除去ネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-07T04:31:33Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。