論文の概要: EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics
- arxiv url: http://arxiv.org/abs/2411.14691v1
- Date: Fri, 22 Nov 2024 02:56:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:38.039595
- Title: EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics
- Title(参考訳): EV-PINN: 電気自動車のダイナミクスを予測するための物理情報ニューラルネットワーク
- Authors: Hansol Lim, Jee Won Lee, Jonathan Boyack, Jongseong Brad Choi,
- Abstract要約: 動的パラメータ(例えば、空力抵抗、ローリング抵抗)のオンボード予測は、EVの正確な経路計画を可能にする。
本稿では,物理情報を用いたニューラルネットワーク手法EV-PINNについて述べる。
- 参考スコア(独自算出の注目度): 0.3749861135832072
- License:
- Abstract: An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs. This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising while generalizing to the nonlinear dynamics of an EV. Our method learns real-world parameters such as motor efficiency, regenerative braking efficiency, vehicle mass, coefficient of aerodynamic drag, and coefficient of rolling resistance using automatic differentiation based on dynamics and ensures consistency with ground truth vehicle data. EV-PINN was validated using 15 and 35 minutes of in-situ battery log data from the Tesla Model 3 Long Range and Tesla Model S, respectively. With only vehicle speed and time as inputs, our model achieves high accuracy and generalization to dynamics, with validation losses of 0.002195 and 0.002292, respectively. This demonstrates EV-PINN's effectiveness in estimating parameters and predicting battery usage under actual driving conditions without the need for additional sensors.
- Abstract(参考訳): 動的パラメータ(例えば、空力抵抗、ローリング抵抗)のオンボード予測は、EVの正確な経路計画を可能にする。
本稿では, 電気自動車の非線形力学を一般化しつつ, 走行中の瞬時のバッテリ電力と累積エネルギー消費を予測する物理情報ニューラルネットワークであるEV-PINNを提案する。
本手法は, 動力効率, 再生ブレーキ効率, 車両質量, 空力抵抗係数, 転がり抵抗係数などの実世界のパラメータを, 動力学に基づく自動微分法を用いて学習し, 地上の真理車データとの整合性を確保する。
EV-PINNはTesla Model 3 Long RangeとTesla Model Sのバッテリーログデータを15分と35分で検証した。
車両の速度と時間のみを入力とし,評価損失は0.002195と0.002292である。
これは、EV-PINNがパラメータを推定し、追加のセンサーを必要とせずに実際の運転条件下でのバッテリ使用量の予測に有効であることを示す。
関連論文リスト
- Knowledge Distillation Neural Network for Predicting Car-following Behaviour of Human-driven and Autonomous Vehicles [2.099922236065961]
本研究では,混合交通におけるHDV-AV,AV-HDV,HDV-HDVの自動車追従挙動について検討した。
本稿では,車追従動作を速度的に予測するための,データ駆動型知識蒸留ニューラルネットワーク(KDNN)モデルを提案する。
論文 参考訳(メタデータ) (2024-11-08T14:57:59Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing [0.0]
本稿では,自律走行車の車両動力学モデリングのための物理インフォームドニューラルネットワーク(PINN)であるDeep Dynamicsを紹介する。
物理係数推定と力学方程式を組み合わせて、高速で車両状態を正確に予測する。
物理ベースのシミュレータとフルスケールの自律型インディレースカーデータを使用したオープンループとクローズドループのパフォーマンス評価は、ディープダイナミクスをレースカーのダイナミックをモデル化するための有望なアプローチとして強調する。
論文 参考訳(メタデータ) (2023-12-07T15:44:56Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
本稿では,モデル不確実性を伴う確率的ニューラルネットワークを用いた運転行動中心のEVエネルギー消費推定モデルを提案する。
モデル不確実性をニューラルネットワークに組み込むことで、モンテカルロを用いたニューラルネットワークのアンサンブルを作成しました。
提案手法は, 平均絶対誤差9.3%を達成し, 既存のEVエネルギー消費モデルよりも精度が高い。
論文 参考訳(メタデータ) (2023-07-02T04:30:20Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Analyzing the Travel and Charging Behavior of Electric Vehicles -- A
Data-driven Approach [1.7403133838762446]
電気自動車(EV)は電力システムにかなりの電力需要をもたらす可能性がある。
本プロジェクトでは,全国住宅ホルドサーベイ(NHTS)データを用いて旅行の順序を定めている。
我々は、旅行開始時間、終了時間、距離など、ドライバーの次の旅行のパラメータを予測する機械学習モデルを開発する。
論文 参考訳(メタデータ) (2021-06-11T15:53:59Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
本研究は,エコドライブ問題に対するセーフオフポジーモデルに基づく強化学習アルゴリズムを提案する。
提案アルゴリズムは, モデルフリーエージェントと比較して, 平均速度が高く, 燃費も良好である。
論文 参考訳(メタデータ) (2021-05-25T03:41:29Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。