論文の概要: Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing
- arxiv url: http://arxiv.org/abs/2312.04374v1
- Date: Thu, 7 Dec 2023 15:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 14:17:07.054358
- Title: Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing
- Title(参考訳): Deep Dynamics: 自律レースのための物理情報ニューラルネットワークを用いた車両ダイナミクスモデリング
- Authors: John Chrosniak and Jingyun Ning and Madhur Behl
- Abstract要約: 本稿では,自律走行車の車両動力学モデリングのための物理インフォームドニューラルネットワーク(PINN)であるDeep Dynamicsを紹介する。
物理係数推定と力学方程式を組み合わせて、高速で車両状態を正確に予測する。
物理ベースのシミュレータとフルスケールの自律型インディレースカーデータを使用したオープンループとクローズドループのパフォーマンス評価は、ディープダイナミクスをレースカーのダイナミックをモデル化するための有望なアプローチとして強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous racing is a critical research area for autonomous driving,
presenting significant challenges in vehicle dynamics modeling, such as
balancing model precision and computational efficiency at high speeds
(>280kmph), where minor errors in modeling have severe consequences. Existing
physics-based models for vehicle dynamics require elaborate testing setups and
tuning, which are hard to implement, time-intensive, and cost-prohibitive.
Conversely, purely data-driven approaches do not generalize well and cannot
adequately ensure physical constraints on predictions. This paper introduces
Deep Dynamics, a physics-informed neural network (PINN) for vehicle dynamics
modeling of an autonomous racecar. It combines physics coefficient estimation
and dynamical equations to accurately predict vehicle states at high speeds and
includes a unique Physics Guard layer to ensure internal coefficient estimates
remain within their nominal physical ranges. Open-loop and closed-loop
performance assessments, using a physics-based simulator and full-scale
autonomous Indy racecar data, highlight Deep Dynamics as a promising approach
for modeling racecar vehicle dynamics.
- Abstract(参考訳): 自律走行は自動運転にとって重要な研究領域であり、モデル精度と計算効率のバランスを高速(>280kmph)で達成するなど、車両の動力学モデリングにおいて重大な課題を提示している。
既存の物理に基づく車両力学モデルでは、実装が難しく、時間集約的で、コストを抑えるような詳細なテスト設定とチューニングが必要となる。
逆に、純粋データ駆動アプローチはうまく一般化せず、予測に対する物理的制約を適切に保証できない。
本稿では,自律走行車の車両動力学モデリングのための物理インフォームドニューラルネットワーク(PINN)であるDeep Dynamicsを紹介する。
物理係数推定と力学方程式を組み合わせることで、高速で車両状態を正確に予測し、内部係数推定が名目上の物理的範囲内にあることを確実にするための物理ガード層を含む。
物理ベースのシミュレータとフルスケールの自律型インディレースカーデータを使用したオープンループとクローズドループのパフォーマンス評価は、ディープダイナミクスをレースカーのダイナミックをモデル化するための有望なアプローチとして強調する。
関連論文リスト
- Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
本稿では、教師付きおよび教師なしの物理インフォームドニューラルネットワーク(PINN)を統合したFTHD法を提案する。
FTHDは、より小さなトレーニングデータセットを使用して、事前トレーニングされたDeep Dynamics Model(DDM)を微調整する。
拡張カルマンフィルタ(EKF)はFTHD内に埋め込まれ、ノイズの多い実世界のデータを効果的に管理し、正確な騒音を確実にする。
その結果, パラメータ推定精度は従来のモデルより大幅に向上し, 既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-09-29T10:33:07Z) - Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
我々は,1つのGPU上で数時間のトレーニングをしながら,競争力の高いベンチマーク結果を実現する,新しい効率的な動き予測モデルを提案する。
その低推論レイテンシは、特に限られたコンピューティングリソースを持つ自律アプリケーションへのデプロイに適している。
論文 参考訳(メタデータ) (2024-09-24T14:58:27Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Vehicle Dynamics Modeling for Autonomous Racing Using Gaussian Processes [0.0]
本稿では,自動走行における車両動力学の近似におけるGPモデルの適用性について,最も詳細な解析を行った。
人気のあるF1TENTHレーシングプラットフォームのための動的および拡張キネマティックモデルを構築した。
論文 参考訳(メタデータ) (2023-06-06T04:53:06Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
物理モデルによるニューラルネットワークに基づくカーフォローモデルの開発を行っています。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
論文 参考訳(メタデータ) (2020-12-24T18:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。