Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
- URL: http://arxiv.org/abs/2411.14726v1
- Date: Fri, 22 Nov 2024 04:45:55 GMT
- Title: Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
- Authors: Xiangyu Zhang,
- Abstract summary: We present Graph-based Topological Reinforcement Learning (GraphTRL), which integrates both chemical and structural data for improved molecular generation.
Evaluations show that GraphTRL outperforms existing methods in binding affinity prediction, offering a promising approach to accelerate drug discovery.
- Score: 10.632524607651105
- License:
- Abstract: The generation of drug-like molecules is crucial for drug design. Existing reinforcement learning (RL) methods often overlook structural information. However, feature engineering-based methods usually merely focus on binding affinity prediction without substantial molecular modification. To address this, we present Graph-based Topological Reinforcement Learning (GraphTRL), which integrates both chemical and structural data for improved molecular generation. GraphTRL leverages multiscale weighted colored graphs (MWCG) and persistent homology, combined with molecular fingerprints, as the state space for RL. Evaluations show that GraphTRL outperforms existing methods in binding affinity prediction, offering a promising approach to accelerate drug discovery.
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
We propose a graph structure learning (GSL) based MPP approach, called GSL-MPP.
Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations.
With molecular fingerprints, we construct a molecular similarity graph (MSG)
arXiv Detail & Related papers (2023-12-28T06:45:13Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTA is a graph contrastive learning framework for molecular graphs to learn drug representations.
Next, we design a new loss function that can be directly used to adjust the uniformity of drug and target representations.
The effectiveness of the above innovative elements is verified on two real datasets.
arXiv Detail & Related papers (2023-07-18T06:01:37Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
We introduce Knowledge-guided Pre-training of Graph Transformer (KPGT), a novel self-supervised learning framework for molecular graph representation learning.
KPGT can offer superior performance over current state-of-the-art methods on several molecular property prediction tasks.
arXiv Detail & Related papers (2022-06-02T08:22:14Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.