Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
- URL: http://arxiv.org/abs/2411.14789v1
- Date: Fri, 22 Nov 2024 08:17:46 GMT
- Title: Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
- Authors: Hongbo Liu,
- Abstract summary: Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks.
However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers.
- Score: 3.2492319522383717
- License:
- Abstract: Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.
Related papers
- Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model [32.094290282897894]
Federated learning aims to train a collective model from physically isolated clients while safeguarding the privacy of users' data.
We propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication.
Our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods.
arXiv Detail & Related papers (2024-04-17T03:42:48Z) - Heterogeneous Federated Learning with Splited Language Model [22.65325348176366]
Federated Split Learning (FSL) is a promising distributed learning paradigm in practice.
In this paper, we harness Pre-trained Image Transformers (PITs) as the initial model, coined FedV, to accelerate the training process and improve model robustness.
We are the first to provide a systematic evaluation of FSL methods with PITs in real-world datasets, different partial device participations, and heterogeneous data splits.
arXiv Detail & Related papers (2024-03-24T07:33:08Z) - OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
Federated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices.
We propose OnDev-LCT: Lightweight Convolutional Transformers for On-Device vision tasks with limited training data and resources.
arXiv Detail & Related papers (2024-01-22T02:17:36Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIP is a cost-effective strategy tailored to enhance the performance of existing CLIP models.
Our method allows for effortless integration with existing models' training pipelines.
On comprehensive benchmarks, HELIP consistently boosts existing models to achieve leading performance.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Instance-Conditioned GAN Data Augmentation for Representation Learning [29.36473147430433]
We introduce DA_IC-GAN, a learnable data augmentation module that can be used off-the-shelf in conjunction with most state-of-the-art training recipes.
We show that DA_IC-GAN can boost accuracy to between 1%p and 2%p with the highest capacity models.
We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings.
arXiv Detail & Related papers (2023-03-16T22:45:43Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.
It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.
Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
arXiv Detail & Related papers (2021-07-16T04:58:58Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.