論文の概要: Adaptive Hyper-Graph Convolution Network for Skeleton-based Human Action Recognition with Virtual Connections
- arxiv url: http://arxiv.org/abs/2411.14796v1
- Date: Fri, 22 Nov 2024 08:41:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:50.530010
- Title: Adaptive Hyper-Graph Convolution Network for Skeleton-based Human Action Recognition with Virtual Connections
- Title(参考訳): 仮想接続を用いた骨格に基づく人行動認識のための適応型ハイパーグラフ畳み込みネットワーク
- Authors: Youwei Zhou, Tianyang Xu, Cong Wu, Xiaojun Wu, Josef Kittler,
- Abstract要約: リッチな意味情報の集約を実現するために,ハイパーグラフ畳み込みネットワーク(Hyper-GCN)を提案する。
特に、Hyper-GCNは、トレーニング中にマルチスケールのハイパーグラフを適応的に最適化し、アクション駆動型マルチ頂点関係を明らかにする。
- 参考スコア(独自算出の注目度): 32.87473930173842
- License:
- Abstract: The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.
- Abstract(参考訳): ヒト骨格の共有トポロジは、最近の行動認識のためのグラフ畳み込みネットワーク(GCN)ソリューションの研究の動機となった。
しかし、既存のGCNはエッジ(骨)によって形成された隣接する2つの頂点(結合体)のバイナリ接続に依存しており、マルチ頂点畳み込み構造を構築する可能性を見越している。
本稿では,超グラフ畳み込みネットワーク(Hyper-GCN)の利点を考察し,骨格の頂点によって伝達されるリッチな意味情報の集約を実現する。
特に、Hyper-GCNは、トレーニング中にマルチスケールのハイパーグラフを適応的に最適化し、アクション駆動型マルチ頂点関係を明らかにする。
さらに仮想接続は、しばしば効率的な機能集約をサポートし、スケルトン内の依存関係のスペクトルを暗黙的に拡張するように設計されている。
仮想接続をハイパーグラフに注入することで、多様なアクションカテゴリの意味的なヒントが強調される。
NTU-60、NTU-120、NW-UCLAデータセットで実施された実験の結果は、最先端の手法と比較して、Hyper-GCNのメリットを実証している。
具体的には、X-SubおよびX-Set上のトップ1認識精度において、NTU-120の既存の解よりも90.2\%と91.4\%を達成している。
関連論文リスト
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Self-Supervised Pretraining for Heterogeneous Hypergraph Neural Networks [9.987252149421982]
異種HyperGNNのための自己教師型事前学習フレームワークを提案する。
本手法は,データ内のエンティティ間の高次関係を,自己教師型で効果的に捉えることができる。
実験の結果,提案するフレームワークは,様々なダウンストリームタスクにおいて,最先端のベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-19T16:34:56Z) - A Unified View Between Tensor Hypergraph Neural Networks And Signal
Denoising [7.083679120873857]
テンソル・ハイパーグラフ畳み込みネットワーク(T-HGCN)がハイパーグラフ上の高次相互作用を維持するための強力なアーキテクチャとして登場したことを示す。
さらに,ハイパーGSD問題に基づくテンソル・ハイアグラフ反復ネットワーク(T-HGIN)を設計し,各層に複数ステップの更新手法を適用する。
論文 参考訳(メタデータ) (2023-09-15T13:19:31Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
論文 参考訳(メタデータ) (2023-06-07T07:40:04Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) はハイパーグラフ表現学習のためのデファクト手法である。
本稿では,各ハイパーグラフからのマルチモーダル情報を効果的に融合できるResidual enhanced Multi-Hypergraph Neural Networkを提案する。
論文 参考訳(メタデータ) (2021-05-02T14:53:32Z) - Graph Cross Networks with Vertex Infomax Pooling [69.38969610952927]
グラフの複数スケールから包括的特徴学習を実現するための新しいグラフクロスネットワーク(GXN)を提案する。
グラフのトレーニング可能な階層表現に基づいて、GXNは、スケール間で中間的特徴の交換を可能にし、情報フローを促進する。
論文 参考訳(メタデータ) (2020-10-05T06:34:23Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。