論文の概要: Cell as Point: One-Stage Framework for Efficient Cell Tracking
- arxiv url: http://arxiv.org/abs/2411.14833v2
- Date: Mon, 10 Mar 2025 23:22:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:15:44.833200
- Title: Cell as Point: One-Stage Framework for Efficient Cell Tracking
- Title(参考訳): Cell as Point: 効率的な細胞追跡のためのワンステージフレームワーク
- Authors: Yaxuan Song, Jianan Fan, Heng Huang, Mei Chen, Weidong Cai,
- Abstract要約: 本稿では,セルをポイントとして扱うことで細胞追跡を再現する新しいエンド・ツー・エンドのワンステージフレームワークを提案する。
従来の方法とは異なり、CAPは明示的な検出やセグメンテーションの必要性を排除し、代わりに1段階の配列の細胞を共同で追跡する。
CAPは有望な細胞追跡性能を示し、既存の方法の10倍から55倍効率が高い。
- 参考スコア(独自算出の注目度): 54.19259129722988
- License:
- Abstract: Conventional multi-stage cell tracking approaches rely heavily on detection or segmentation in each frame as a prerequisite, requiring substantial resources for high-quality segmentation masks and increasing the overall prediction time. To address these limitations, we propose CAP, a novel end-to-end one-stage framework that reimagines cell tracking by treating Cell as Point. Unlike traditional methods, CAP eliminates the need for explicit detection or segmentation, instead jointly tracking cells for sequences in one stage by leveraging the inherent correlations among their trajectories. This simplification reduces both labeling requirements and pipeline complexity. However, directly processing the entire sequence in one stage poses challenges related to data imbalance in capturing cell division events and long sequence inference. To solve these challenges, CAP introduces two key innovations: (1) adaptive event-guided (AEG) sampling, which prioritizes cell division events to mitigate the occurrence imbalance of cell events, and (2) the rolling-as-window (RAW) inference strategy, which ensures continuous and stable tracking of newly emerging cells over extended sequences. By removing the dependency on segmentation-based preprocessing while addressing the challenges of imbalanced occurrence of cell events and long-sequence tracking, CAP demonstrates promising cell tracking performance and is 10 to 55 times more efficient than existing methods. The code and model checkpoints will be available soon.
- Abstract(参考訳): 従来の多段階の細胞追跡手法は、必要条件として各フレームの検出やセグメンテーションに大きく依存しており、高品質なセグメンテーションマスクにかなりのリソースを必要とし、全体的な予測時間を増大させる。
これらの制約に対処するため,我々はセルをポイントとして扱うことで細胞追跡を再現する新しいエンドツーエンドのワンステージフレームワークであるCAPを提案する。
従来の方法とは異なり、CAPは明示的な検出やセグメンテーションの必要性を排除し、代わりに、その軌道間の固有の相関を利用して、1段階の配列の細胞を共同で追跡する。
この単純化により、ラベリング要件とパイプラインの複雑さの両方が軽減される。
しかし、シーケンス全体を1段階で直接処理することは、セル分割イベントと長いシーケンス推論をキャプチャする際のデータ不均衡に関連する課題を引き起こす。
これらの課題を解決するためにCAPは,(1)アダプティブ・イベント誘導(AEG)サンプリング,2)セルイベントの発生不均衡を緩和する細胞分裂イベントの優先順位付け,(2)新しいセルの連続的かつ安定した追跡を可能にするロール・アズ・ウインドウ(RAW)推論戦略を導入している。
セルイベントの不均衡発生や長期追跡の課題に対処しながらセグメンテーションベースの前処理に依存することを取り除くことで、CAPは有望なセル追跡性能を示し、既存の方法の10倍から55倍の効率である。
コードとモデルチェックポイントは近く利用可能になる。
関連論文リスト
- Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
そこで我々はDenseTrackという新しいセル追跡アルゴリズムを提案する。
DenseTrackは、ディープラーニングと数学的モデルベースの戦略を統合して、連続するフレーム間の対応を確立する。
固有分解に基づく細胞分裂検出戦略を提案する。
論文 参考訳(メタデータ) (2024-06-27T23:26:57Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - OCELOT: Overlapped Cell on Tissue Dataset for Histopathology [13.691924123273004]
組織学における細胞検出のための細胞間関係研究のためのデータセットであるOCELOTをリリースする。
細胞と組織の両方のタスクを同時に学習できるマルチタスク学習手法を提案する。
特にOCELOTテストセットでは、F1スコアが最大6.79改善されている。
論文 参考訳(メタデータ) (2023-03-23T08:57:11Z) - Cell tracking for live-cell microscopy using an activity-prioritized
assignment strategy [0.9134244356393666]
細胞追跡は、分裂パターンや伸長率などの単一細胞の特徴を決定するために、ライブセルイメージングにおいて必須のツールである。
微生物のライブ細胞実験では、細胞は時間とともに成長し、移動し、分裂し、単層構造に密に詰め込まれた細胞コロニーを形成する。
そこで本研究では, 成長する細胞に近接する活性優先の細胞追跡手法と, 母細胞の分裂を娘に割り当てる解法とから, 高速優先の細胞追跡手法を提案する。
論文 参考訳(メタデータ) (2022-10-20T17:40:31Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - CellTrack R-CNN: A Novel End-To-End Deep Neural Network for Cell
Segmentation and Tracking in Microscopy Images [21.747994390120105]
細胞セグメンテーションと細胞追跡を一体化したエンドツーエンドのディープラーニングベースのフレームワークに結合する新しいアプローチを提案します。
本手法はセルセグメンテーションとセル追跡アキュラシーの両方の観点から最先端アルゴリズムを上回る。
論文 参考訳(メタデータ) (2021-02-20T15:55:40Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
本研究では,分割マップのインスタンスへの変換を改善するために,2段階の後処理手順であるSplitとExpandを提案する。
Splitのステップでは,セルの集合をセグメント化マップから個々のセルインスタンスに分割し,セル中心の予測を導出する。
拡張ステップでは、細胞中心予測を用いて、小さな細胞が欠落していることが分かる。
論文 参考訳(メタデータ) (2020-07-21T14:05:09Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
顕微鏡画像における触覚細胞のセグメンテーション法を提案する。
距離マップにインスパイアされた新しい細胞境界の表現を用いることで, 触覚細胞だけでなく, 近接細胞をトレーニングプロセスで利用することができる。
この表現は、特にアノテーションエラーに対して堅牢であり、未表現または未含の細胞型を含むトレーニングデータに含まれる顕微鏡画像のセグメンテーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-03T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。