論文の概要: Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition
- arxiv url: http://arxiv.org/abs/2411.14880v1
- Date: Fri, 22 Nov 2024 12:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:17.308464
- Title: Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition
- Title(参考訳): 突発的談話関係認識のためのバーバリザとしての階層型プロトタイプの活用
- Authors: Wanqiu Long, Bonnie Webber,
- Abstract要約: 暗黙の言論関係認識は、明示的な言論接続によってリンクされていないテキストのスパン間の関係を決定することを含む。
それまでの作業は、暗黙の言論関係認識のための手話代行にのみ依存していた。
特定のクラスレベルの意味的特徴をキャプチャするプロトタイプと、異なるクラスに対する階層的なラベル構造を、動詞化子として活用する。
- 参考スコア(独自算出の注目度): 7.149359970799236
- License:
- Abstract: Implicit discourse relation recognition involves determining relationships that hold between spans of text that are not linked by an explicit discourse connective. In recent years, the pre-train, prompt, and predict paradigm has emerged as a promising approach for tackling this task. However, previous work solely relied on manual verbalizers for implicit discourse relation recognition, which suffer from issues of ambiguity and even incorrectness. To overcome these limitations, we leverage the prototypes that capture certain class-level semantic features and the hierarchical label structure for different classes as the verbalizer. We show that our method improves on competitive baselines. Besides, our proposed approach can be extended to enable zero-shot cross-lingual learning, facilitating the recognition of discourse relations in languages with scarce resources. These advancement validate the practicality and versatility of our approach in addressing the issues of implicit discourse relation recognition across different languages.
- Abstract(参考訳): 暗黙の言論関係認識は、明示的な言論接続によってリンクされていないテキストのスパンの間に保持される関係を決定することを含む。
近年、この課題に対処するための有望なアプローチとして、事前訓練、プロンプト、予測パラダイムが登場している。
しかし、従来の研究は、曖昧さや不正確さといった問題に悩まされる暗黙の言論関係認識のために、手動の言葉遣いにのみ依存していた。
これらの制限を克服するために、あるクラスレベルの意味的特徴をキャプチャするプロトタイプと、異なるクラスに対する階層的なラベル構造を、動詞化子として活用する。
提案手法は, 競争ベースラインの向上を図っている。
さらに,提案手法を拡張してゼロショット言語間学習を実現し,資源不足の言語における談話関係の認識を容易にする。
これらの進歩は、異なる言語間の暗黙的な対話関係認識の問題に対処する上で、我々のアプローチの実用性と汎用性を検証するものである。
関連論文リスト
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
本研究では,空間的時間的整合性を通じてリッチな文脈を探索する自己教師付きコントラスト学習フレームワークを提案する。
動きと関節のモーダル性の相補性に着想を得て,手話モデルに一階動作情報を導入する。
提案手法は,4つの公開ベンチマークの広範な実験により評価され,新しい最先端性能と顕著なマージンを実現している。
論文 参考訳(メタデータ) (2024-06-15T04:50:19Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
意味的差異をトークンレベルの回帰タスクとして認識する。
マスク付き言語モデルに依存する3つの教師なしアプローチについて検討する。
その結果,単語アライメントと文レベルのコントラスト学習に基づくアプローチは,ゴールドラベルと強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-05-22T17:58:04Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
多クラス分類のための新しいプレフィックスチューニング手法であるCCPrefixを提案する。
基本的に、ラベル空間における実数対から派生したインスタンス依存の軟式接頭辞は、多クラス分類における言語動詞化を補完するために利用される。
論文 参考訳(メタデータ) (2022-11-11T03:45:59Z) - Prompt-based Connective Prediction Method for Fine-grained Implicit
Discourse Relation Recognition [34.02125358302028]
本稿では,IDRRのための新しいPrompt-based Connective Prediction (PCP)法を提案する。
提案手法は,大規模事前学習モデルに対して,談話関係に関する知識を利用するよう指示する。
実験の結果,本手法は現在の最先端モデルを上回ることがわかった。
論文 参考訳(メタデータ) (2022-10-13T13:47:13Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
入力テキスト中のハイブリッドな粒度意味を統一する階層的コントラスト学習機構を提案する。
実験により,本モデルがパラフレージング,対話生成,ストーリーテリングタスクにおいて,競争ベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2022-05-26T13:26:03Z) - Augmenting BERT-style Models with Predictive Coding to Improve
Discourse-level Representations [20.855686009404703]
本稿では,予測符号化理論のアイデアを用いて,議論レベルの表現を学習するためのメカニズムによりBERTスタイルの言語モデルを拡張することを提案する。
提案手法は,ネットワークの中間層で動作する明示的なトップダウン接続を用いて,将来の文を予測できる。
論文 参考訳(メタデータ) (2021-09-10T00:45:28Z) - Let's be explicit about that: Distant supervision for implicit discourse
relation classification via connective prediction [0.0]
暗黙の談話関係分類では,任意の談話接続が存在しない場合,隣り合う文間の関係を予測したい。
我々は,暗黙関係の明示を通じてデータ不足を回避し,タスクを2つのサブプロブレム(言語モデリングと明示的談話関係分類)に減らした。
実験結果から,本手法は同等性能の代替モデルよりも遥かに単純であるにもかかわらず,最先端技術よりもはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T17:57:32Z) - Discourse Coherence, Reference Grounding and Goal Oriented Dialogue [15.766916122461922]
我々は、混合開始型人間-コンピュータの参照通信を実現するための新しいアプローチについて論じる。
本稿では,談話間の制約を蓄積し,学習確率モデルを用いて解釈する参照通信領域における単純な対話システムについて述べる。
論文 参考訳(メタデータ) (2020-07-08T20:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。