論文の概要: Discourse Coherence, Reference Grounding and Goal Oriented Dialogue
- arxiv url: http://arxiv.org/abs/2007.04428v1
- Date: Wed, 8 Jul 2020 20:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 13:05:08.876451
- Title: Discourse Coherence, Reference Grounding and Goal Oriented Dialogue
- Title(参考訳): 談話のコヒーレンス,参照グラウンド,目標指向対話
- Authors: Baber Khalid, Malihe Alikhani, Michael Fellner, Brian McMahan, Matthew
Stone
- Abstract要約: 我々は、混合開始型人間-コンピュータの参照通信を実現するための新しいアプローチについて論じる。
本稿では,談話間の制約を蓄積し,学習確率モデルを用いて解釈する参照通信領域における単純な対話システムについて述べる。
- 参考スコア(独自算出の注目度): 15.766916122461922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior approaches to realizing mixed-initiative human--computer referential
communication have adopted information-state or collaborative problem-solving
approaches. In this paper, we argue for a new approach, inspired by
coherence-based models of discourse such as SDRT \cite{asher-lascarides:2003a},
in which utterances attach to an evolving discourse structure and the
associated knowledge graph of speaker commitments serves as an interface to
real-world reasoning and conversational strategy. As first steps towards
implementing the approach, we describe a simple dialogue system in a
referential communication domain that accumulates constraints across discourse,
interprets them using a learned probabilistic model, and plans clarification
using reinforcement learning.
- Abstract(参考訳): 混合開始型ヒューマンコンピュータ参照コミュニケーションを実現するための従来のアプローチは、情報状態または協調的な問題解決アプローチを採用してきた。
本稿では,sdrt \cite{asher-lascarides:2003a} のようなコヒーレンスに基づく談話モデルに着想を得た新たなアプローチを議論する。
提案手法の実装に向けた第一歩として、談話間の制約を蓄積し、学習確率モデルを用いてそれらを解釈する参照通信領域における単純な対話システムについて述べる。
関連論文リスト
- Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition [7.149359970799236]
暗黙の言論関係認識は、明示的な言論接続によってリンクされていないテキストのスパン間の関係を決定することを含む。
それまでの作業は、暗黙の言論関係認識のための手話代行にのみ依存していた。
特定のクラスレベルの意味的特徴をキャプチャするプロトタイプと、異なるクラスに対する階層的なラベル構造を、動詞化子として活用する。
論文 参考訳(メタデータ) (2024-11-22T12:01:04Z) - Human-Robot Dialogue Annotation for Multi-Modal Common Ground [4.665414514091581]
本稿では,人間とロボットの対話データにアノテートした記号表現の開発について述べる。
遠隔対話では,人間とロボットが不慣れな環境における共同ナビゲーションと探索作業に従事しているが,ロボットは限られた通信制約のため,すぐには高品質な視覚情報を共有できない。
このパラダイム内では、抽象的意味表現の強化である対話-AMRアノテーションを通じて、対話中の1つの発話の命題意味と補間力を取り込む。
論文 参考訳(メタデータ) (2024-11-19T19:33:54Z) - Dialectical Reconciliation via Structured Argumentative Dialogues [14.584998154271512]
我々のフレームワークは,説明者(AIエージェント)と説明者(ヒューマンユーザ)の知識の相違に対処するための弁証的調和を可能にする。
我々のフレームワークは、説明可能性の重要性が重要である領域において、効果的な人間とAIの相互作用を促進するための有望な方向を提供することを示唆している。
論文 参考訳(メタデータ) (2023-06-26T13:39:36Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - Speaker-Oriented Latent Structures for Dialogue-Based Relation
Extraction [10.381257436462116]
そこで我々は,話者指向の潜在構造を明瞭に誘導し,DiaREを改善する新しいモデルSOLSを提案する。
具体的には,発話境界を超えたトークン間の関係を捉えるために,潜在構造を学習する。
学習過程において、話者固有の正規化手法は、話者に関連するキーキーを徐々に強調し、無関係なキーを消去する。
論文 参考訳(メタデータ) (2021-09-11T04:24:51Z) - Conversational Norms for Human-Robot Dialogues [0.32228025627337864]
本稿では,会話規範違反に対処するコンピュータ対話システムの開発を支援するために,最近開始された研究プロジェクトについて述べる。
我々のアプローチは,分散文法システム(CDGS)と連携した対話と規範をモデル化することである。
論文 参考訳(メタデータ) (2021-03-02T13:28:18Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
本稿では,粗いキーワードを導入することで,システム応答の意図した内容を制御する構造的アプローチを提案する。
また,対話を円滑な目標達成に導くために,より高い成功率で対話を誘導する新たな二重談話レベルの目標誘導戦略を提案する。
論文 参考訳(メタデータ) (2020-02-04T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。