論文の概要: Design-o-meter: Towards Evaluating and Refining Graphic Designs
- arxiv url: http://arxiv.org/abs/2411.14959v1
- Date: Fri, 22 Nov 2024 14:17:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:39.304409
- Title: Design-o-meter: Towards Evaluating and Refining Graphic Designs
- Title(参考訳): デザイン・オ・メーター:グラフィカルデザインの評価と精錬を目指して
- Authors: Sahil Goyal, Abhinav Mahajan, Swasti Mishra, Prateksha Udhayanan, Tripti Shukla, K J Joseph, Balaji Vasan Srinivasan,
- Abstract要約: 本稿では,グラフィックデザインの良さを定量化するデータ駆動手法であるDesign-o-meterを紹介する。
私たちの知る限りでは、Design-o-meterは統一されたフレームワークで設計をスコア付けし洗練する最初のアプローチです。
- 参考スコア(独自算出の注目度): 11.416650723712968
- License:
- Abstract: Graphic designs are an effective medium for visual communication. They range from greeting cards to corporate flyers and beyond. Off-late, machine learning techniques are able to generate such designs, which accelerates the rate of content production. An automated way of evaluating their quality becomes critical. Towards this end, we introduce Design-o-meter, a data-driven methodology to quantify the goodness of graphic designs. Further, our approach can suggest modifications to these designs to improve its visual appeal. To the best of our knowledge, Design-o-meter is the first approach that scores and refines designs in a unified framework despite the inherent subjectivity and ambiguity of the setting. Our exhaustive quantitative and qualitative analysis of our approach against baselines adapted for the task (including recent Multimodal LLM-based approaches) brings out the efficacy of our methodology. We hope our work will usher more interest in this important and pragmatic problem setting.
- Abstract(参考訳): グラフィックデザインは視覚コミュニケーションに有効な媒体である。
挨拶カードから企業チラシまで多岐にわたる。
オフラインの機械学習技術はそのようなデザインを生成することができ、コンテンツ生産の速度を加速させる。
品質を評価する自動化された方法が重要になります。
この目的に向けて,図形設計の良さを定量化するデータ駆動手法であるDesign-o-meterを導入する。
さらに, 視覚的魅力を向上させるため, これらのデザインの変更を提案する。
私たちの知る限りでは、デザイン・オ・メーターは、設定の固有の主観性とあいまいさにもかかわらず、統一されたフレームワークで設計をスコアし、洗練する最初のアプローチです。
近年のマルチモーダル LLM ベースアプローチを含む) に適応したベースラインに対する我々のアプローチの徹底的定量的・定性的な分析により,提案手法の有効性が示唆された。
私たちの仕事は、この重要かつ実践的な問題設定に対するより関心を増すことを願っています。
関連論文リスト
- Design Editing for Offline Model-based Optimization [18.701760631151316]
オフラインモデルベース最適化(MBO)は、デザインとスコアのオフラインデータセットのみを使用してブラックボックスの目的関数を最大化することを目的としている。
一般的なアプローチは、既存の設計とその対応するスコアを使用して代理モデルをトレーニングし、その後、代理モデルに関する勾配ベースの更新を通じて新しい設計を生成することである。
この方法は、サロゲートモデルが見当たらない設計の高得点を誤って予測できるという、アウト・オブ・ディストリビューションの問題に悩まされる。
過度に最適化された設計を校正する前に拡散を利用したオフラインモデルベース最適化のための新しい設計編集手法(DEMO)を提案する。
論文 参考訳(メタデータ) (2024-05-22T20:00:19Z) - Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance [62.15866177242207]
主観的条件を構築することにより、与えられた主観的条件と入力テキストプロンプトの両方に整合した出力が得られることを示す。
私たちのアプローチは概念的にはシンプルで、最小限のコード修正しか必要ありませんが、実質的な品質改善につながります。
論文 参考訳(メタデータ) (2024-05-02T15:03:41Z) - Evaluation Metrics for Automated Typographic Poster Generation [0.24578723416255752]
タイポグラフィー設計評価のための指標のセットを提案し,その妥当性に着目した。
また、感情認識を統合して、テキストのセマンティクスを自動的に識別し、アプローチのパフォーマンスを解析する。
論文 参考訳(メタデータ) (2024-02-10T13:18:10Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Material Prediction for Design Automation Using Graph Representation
Learning [5.181429907321226]
本稿では,集合体の物質予測を支援するグラフ表現学習フレームワークを提案する。
CADモデルの集合グラフ表現上でのノードレベルの予測タスクとして材料選択タスクを定式化し、グラフニューラルネットワーク(GNN)を用いてそれに取り組む。
提案するフレームワークは,大規模データセットにスケールアップし,デザイナの知識を学習プロセスに組み込む。
論文 参考訳(メタデータ) (2022-09-26T15:49:35Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
設計者は、与えられた目的の集合を最大化する設計パラメータの組み合わせを見つけるよう求められる設計最適化タスクに苦労すると言われている。
モデルベースの計算設計アルゴリズムは、設計中に設計例を生成することでデザイナを支援する。
一方、補助のためのブラックボックスメソッドは、あらゆる設計問題に対処できる。
論文 参考訳(メタデータ) (2022-04-15T20:40:43Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
現代の機械学習アルゴリズムの感度を入力摂動に活かし、「ロバストオブジェクト」を設計するフレームワークを開発しています。
標準ベンチマークから(シミュレーション中)ロボット工学まで,さまざまな視覚ベースのタスクに対するフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-22T18:26:07Z) - Towards Fine-grained Human Pose Transfer with Detail Replenishing
Network [96.54367984986898]
ヒューマン・ポーズ・トランスファー(HPT)は、ファッションデザイン、メディア制作、オンライン広告、バーチャルリアリティーにおいて大きな可能性を秘めている研究分野である。
既存のHPT手法は、詳細不足、内容の曖昧さ、スタイルの不整合という3つの根本的な問題に悩まされることが多い。
我々は、より難易度が高く実用的なHPTセッティングを開発し、よりセマンティックな忠実さと詳細な補充に焦点を当てた、FHPT(F Fine-fine Human Pose Transfer)と呼ばれる。
論文 参考訳(メタデータ) (2020-05-26T03:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。