論文の概要: Detecting Hallucinations in Virtual Histology with Neural Precursors
- arxiv url: http://arxiv.org/abs/2411.15060v1
- Date: Fri, 22 Nov 2024 16:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:29.681471
- Title: Detecting Hallucinations in Virtual Histology with Neural Precursors
- Title(参考訳): 神経前駆体を用いた仮想組織学における幻覚の検出
- Authors: Ji-Hun Oh, Kianoush Falahkheirkhah, Rohit Bhargava,
- Abstract要約: テスト時間検出のためのVSモデル埋め込みからNHP(Neural Hallucination Precursor)を識別する,スケーラブルなポストホック幻覚検出手法を提案する。
幻覚の少ないVSモデルは、必ずしもそれらをよりよく開示するわけではないことを示し、以前のメトリクスだけを報告する際に、セキュリティの誤った感覚を危険にさらしている。
- 参考スコア(独自算出の注目度): 0.27309692684728604
- License:
- Abstract: Significant biomedical research and clinical care rely on the histopathologic examination of tissue structure using microscopy of stained tissue. Virtual staining (VS) offers a promising alternative with the potential to reduce cost and eliminate the use of toxic reagents. However, the critical challenge of hallucinations limits confidence in its use, necessitating a VS co-pilot to detect these hallucinations. Here, we first formally establish the problem of hallucination detection in VS. Next, we introduce a scalable, post-hoc hallucination detection method that identifies a Neural Hallucination Precursor (NHP) from VS model embeddings for test-time detection. We report extensive validation across diverse and challenging VS settings to demonstrate NHP's effectiveness and robustness. Furthermore, we show that VS models with fewer hallucinations do not necessarily disclose them better, risking a false sense of security when reporting just the former metric. This highlights the need for a reassessment of current VS evaluation practices.
- Abstract(参考訳): 重要な生医学研究と臨床医療は、染色組織の顕微鏡を用いて組織構造の病理組織学的検査に依存する。
仮想染色(VS)は、コストを削減し、有毒な試薬を不要にする可能性を持つ、有望な代替手段を提供する。
しかし、幻覚の重大な課題は、その使用に対する信頼性を制限し、これらの幻覚を検出するためにVSコパイロットを必要とする。
次に、テスト時間検出のためのVSモデル埋め込みからNHP(Neural Hallucination Precursor)を識別するスケーラブルでポストホックな幻覚検出手法を提案する。
NHPの有効性とロバスト性を示すため,多種多様なVS設定にまたがる広範囲な検証を報告する。
さらに、幻覚の少ないVSモデルは、必ずしもそれらをよりよく開示するわけではないことを示し、以前のメトリクスだけを報告する際に、セキュリティの誤った感覚を危険にさらす。
これは、現在のVS評価プラクティスの再評価の必要性を強調している。
関連論文リスト
- Can Your Uncertainty Scores Detect Hallucinated Entity? [14.432545893757677]
本稿では,エンティティレベルで幻覚を注釈する新たなデータセットであるHaluEntityを提案する。
このデータセットに基づいて、17の近代LCMにおける不確実性に基づく幻覚検出手法を評価する。
実験の結果,個々のトークン確率に着目した不確実性推定手法は幻覚を過度に予測する傾向があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T16:01:41Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - Detecting and Evaluating Medical Hallucinations in Large Vision Language Models [22.30139330566514]
大規模ビジョン言語モデル(LVLM)は、医療アプリケーションにとってますます不可欠なものになっている。
LVLMは幻覚への感受性を継承する。
幻覚検出と評価に特化して設計された最初のベンチマークであるMed-HallMarkを紹介する。
また,正確な幻覚検出のための医療用LVLMであるMedHallDetectorも紹介した。
論文 参考訳(メタデータ) (2024-06-14T17:14:22Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
大規模言語モデル(LM)は、しばしば幻覚と呼ばれる事実的誤りを引き起こす傾向にある。
我々は,幻覚の包括的分類を導入し,幻覚が多様な形態で現れることを議論する。
本稿では, 幻覚自動検出のための新しいタスクを提案し, 新たな評価ベンチマークであるFavaBenchを構築した。
論文 参考訳(メタデータ) (2024-01-12T19:02:48Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
大きな言語モデル(LLM)は幻覚を発生させ、ミッションクリティカルなタスクにデプロイすると大きなダメージを与える可能性がある。
本稿では,逆検証に基づく自己チェック手法を提案し,ゼロリソース方式で事実誤りを自動的に検出する。
提案手法と既存のゼロリソース検出手法を2つのデータセット上で実証的に評価した。
論文 参考訳(メタデータ) (2023-10-10T10:14:59Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
大規模な言語モデルは、しばしば信頼性を著しく損なう「ハロシン化」する傾向がある。
生成過程における幻覚を積極的に検出・緩和する手法を提案する。
提案手法は, GPT-3.5モデルの幻覚を平均47.5%から14.5%に低減する。
論文 参考訳(メタデータ) (2023-07-08T14:25:57Z) - Looking for a Needle in a Haystack: A Comprehensive Study of
Hallucinations in Neural Machine Translation [17.102338932907294]
我々はNMT幻覚研究の基礎を設定した。
テスト時に幻覚を緩和する簡単な方法であるDeHallucinatorを提案する。
論文 参考訳(メタデータ) (2022-08-10T12:44:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。