論文の概要: Quantum-enhanced unsupervised image segmentation for medical images analysis
- arxiv url: http://arxiv.org/abs/2411.15086v1
- Date: Fri, 22 Nov 2024 17:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:33.923879
- Title: Quantum-enhanced unsupervised image segmentation for medical images analysis
- Title(参考訳): 医用画像解析のための量子エンハンスな教師なし画像分割
- Authors: Laia Domingo, Mahdi Chehimi,
- Abstract要約: 乳がんは、世界中で女性のがん関連死亡の原因となっている。
人工知能を用いたイメージセグメンテーションは、このワークフローを合理化するための有望な代替手段を提供する。
マンモグラフィーの医用画像セグメンテーションのための第1のエンドツーエンド量子拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License:
- Abstract: Breast cancer remains the leading cause of cancer-related mortality among women worldwide, necessitating the meticulous examination of mammograms by radiologists to characterize abnormal lesions. This manual process demands high accuracy and is often time-consuming, costly, and error-prone. Automated image segmentation using artificial intelligence offers a promising alternative to streamline this workflow. However, most existing methods are supervised, requiring large, expertly annotated datasets that are not always available, and they experience significant generalization issues. Thus, unsupervised learning models can be leveraged for image segmentation, but they come at a cost of reduced accuracy, or require extensive computational resourcess. In this paper, we propose the first end-to-end quantum-enhanced framework for unsupervised mammography medical images segmentation that balances between performance accuracy and computational requirements. We first introduce a quantum-inspired image representation that serves as an initial approximation of the segmentation mask. The segmentation task is then formulated as a QUBO problem, aiming to maximize the contrast between the background and the tumor region while ensuring a cohesive segmentation mask with minimal connected components. We conduct an extensive evaluation of quantum and quantum-inspired methods for image segmentation, demonstrating that quantum annealing and variational quantum circuits achieve performance comparable to classical optimization techniques. Notably, quantum annealing is shown to be an order of magnitude faster than the classical optimization method in our experiments. Our findings demonstrate that this framework achieves performance comparable to state-of-the-art supervised methods, including UNet-based architectures, offering a viable unsupervised alternative for breast cancer image segmentation.
- Abstract(参考訳): 乳がんは、世界中の女性のがん関連死亡の主な原因であり、異常な病変を特徴づけるために、放射線医によるマンモグラフィーの綿密な検査が必要である。
この手動のプロセスは高い精度を必要とし、しばしば時間がかかり、コストがかかり、エラーが発生します。
人工知能を使った自動画像分割は、このワークフローを合理化するための有望な代替手段を提供する。
しかし、既存のほとんどのメソッドは監視されており、常に利用できない大規模で専門的な注釈付きデータセットを必要とし、重大な一般化の問題を経験している。
したがって、教師なし学習モデルは画像のセグメンテーションに利用することができるが、精度の低下や膨大な計算資源を必要とする。
本稿では,非教師なしマンモグラフィ医用画像セグメンテーションのための,最初のエンドツーエンドの量子強調フレームワークを提案する。
まず、セグメント化マスクの初期近似として機能する量子インスピレーション画像表現を導入する。
次に、このセグメンテーションタスクをQUBO問題として定式化し、最小連結成分の密接なセグメンテーションマスクを確保しつつ、背景と腫瘍領域のコントラストを最大化する。
我々は,量子アニールと変分量子回路が古典的最適化手法に匹敵する性能を発揮することを示すために,画像分割のための量子および量子に着想を得た手法を広範囲に評価する。
特に, 量子アニールは, 従来の最適化法よりも桁違いに高速であることがわかった。
以上の結果から, このフレームワークは, UNet ベースのアーキテクチャを含む最先端の教師付き手法に匹敵する性能を達成し, 乳がん画像セグメント化の有効な代替手段となることが示唆された。
関連論文リスト
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
ハミルトン変分オートエンコーダ(HVAE)に基づくエンドツーエンドアーキテクチャを提案する。
従来の変分オートエンコーダ(VAE)と比較して後部分布近似が向上する。
本手法は, 生成的逆境条件より優れ, 画像品質の向上を示す。
論文 参考訳(メタデータ) (2023-11-17T11:56:53Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
本稿では,マルチモーダルの観点から視覚モダリティの課題に取り組む。
本稿では,冗長な情報問題とスパース空間問題に対処するために,クロスモーダルガイダンス(CMG)を提案する。
視覚異常検出のためのよりコンパクトな潜在空間を学習するために、CMLEは言語モダリティから相関構造行列を学習する。
論文 参考訳(メタデータ) (2023-10-04T13:44:56Z) - Tumor-Centered Patching for Enhanced Medical Image Segmentation [0.0]
本研究は、パッチベースの画像解析のための腫瘍自体を中心にした革新的なアプローチを導入する。
腫瘍の解剖学的文脈にパッチを合わせることにより、この技術は特徴抽出の精度を高め、計算負荷を低減する。
論文 参考訳(メタデータ) (2023-08-23T14:35:03Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
本研究は、弱教師付き脳腫瘍セグメント化を実現するために、スーパーピクセル生成モデルとスーパーピクセルクラスタリングモデルを使用することを提案する。
われわれは、Multimodal Brain tumor Challenge 2020データセットからの2Dの磁気共鳴脳スキャンと、パイプラインを訓練するための腫瘍の存在を示すラベルを用いた。
提案手法は平均Dice係数0.691と平均95%Hausdorff距離18.1を達成し,既存のスーパーピクセルベースの弱教師付きセグメンテーション法より優れていた。
論文 参考訳(メタデータ) (2022-09-20T18:08:34Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
非教師型医用画像分割のための新しいコントラスト型登録アーキテクチャを提案する。
まず、教師なしの医用画像セグメントの登録により、画像から画像への変換パターンをキャプチャするアーキテクチャを提案する。
第2に,特徴レベルのネットワークの識別能力を高めるために,コントラスト学習機構を登録アーキテクチャに組み込む。
論文 参考訳(メタデータ) (2020-11-17T19:29:08Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
本稿では、上記の全てのリソースを精度に悪影響を及ぼすことなく最適化するオンライントモグラフィーアルゴリズムを提案する。
このプロトコルは、状態コピー、測定設定、メモリのランクと寸法で証明可能なパフォーマンスを初めて提供する。
量子コンピュータ上でアルゴリズムを実行し、量子状態トモグラフィーのための量子スピードアップを提供することにより、さらなる改善が可能となる。
論文 参考訳(メタデータ) (2020-09-17T11:28:41Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。