Quantum-enhanced unsupervised image segmentation for medical images analysis
- URL: http://arxiv.org/abs/2411.15086v1
- Date: Fri, 22 Nov 2024 17:28:07 GMT
- Title: Quantum-enhanced unsupervised image segmentation for medical images analysis
- Authors: Laia Domingo, Mahdi Chehimi,
- Abstract summary: Breast cancer remains the leading cause of cancer-related mortality among women worldwide.
Image segmentation using artificial intelligence offers a promising alternative to streamline this workflow.
We propose the first end-to-end quantum-enhanced framework for unsupervised mammography medical images segmentation.
- Score: 2.1485350418225244
- License:
- Abstract: Breast cancer remains the leading cause of cancer-related mortality among women worldwide, necessitating the meticulous examination of mammograms by radiologists to characterize abnormal lesions. This manual process demands high accuracy and is often time-consuming, costly, and error-prone. Automated image segmentation using artificial intelligence offers a promising alternative to streamline this workflow. However, most existing methods are supervised, requiring large, expertly annotated datasets that are not always available, and they experience significant generalization issues. Thus, unsupervised learning models can be leveraged for image segmentation, but they come at a cost of reduced accuracy, or require extensive computational resourcess. In this paper, we propose the first end-to-end quantum-enhanced framework for unsupervised mammography medical images segmentation that balances between performance accuracy and computational requirements. We first introduce a quantum-inspired image representation that serves as an initial approximation of the segmentation mask. The segmentation task is then formulated as a QUBO problem, aiming to maximize the contrast between the background and the tumor region while ensuring a cohesive segmentation mask with minimal connected components. We conduct an extensive evaluation of quantum and quantum-inspired methods for image segmentation, demonstrating that quantum annealing and variational quantum circuits achieve performance comparable to classical optimization techniques. Notably, quantum annealing is shown to be an order of magnitude faster than the classical optimization method in our experiments. Our findings demonstrate that this framework achieves performance comparable to state-of-the-art supervised methods, including UNet-based architectures, offering a viable unsupervised alternative for breast cancer image segmentation.
Related papers
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
This research is development of a novel counterfactual inpainting approach (COIN)
COIN flips the predicted classification label from abnormal to normal by using a generative model.
The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia.
arXiv Detail & Related papers (2024-04-19T12:09:49Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - Tumor-Centered Patching for Enhanced Medical Image Segmentation [0.0]
This research introduces an innovative approach centered on the tumor itself for patch-based image analysis.
By aligning patches with the tumor's anatomical context, this technique enhances feature extraction accuracy and reduces computational load.
arXiv Detail & Related papers (2023-08-23T14:35:03Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
This work proposes the use of a superpixel generation model and a superpixel clustering model to enable weakly supervised brain tumor segmentations.
We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Challenge 2020 dataset and labels indicating the presence of tumors to train the pipeline.
Our method achieved a mean Dice coefficient of 0.691 and a mean 95% Hausdorff distance of 18.1, outperforming existing superpixel-based weakly supervised segmentation methods.
arXiv Detail & Related papers (2022-09-20T18:08:34Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
We present a novel contrastive registration architecture for unsupervised medical image segmentation.
Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation.
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
arXiv Detail & Related papers (2020-11-17T19:29:08Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.