PRIMUS: Pretraining IMU Encoders with Multimodal Self-Supervision
- URL: http://arxiv.org/abs/2411.15127v1
- Date: Fri, 22 Nov 2024 18:46:30 GMT
- Title: PRIMUS: Pretraining IMU Encoders with Multimodal Self-Supervision
- Authors: Arnav M. Das, Chi Ian Tang, Fahim Kawsar, Mohammad Malekzadeh,
- Abstract summary: Inertial Measurement Units (IMUs) embedded in personal devices have enabled significant applications in health and wellness.
While labeled IMU data is scarce, we can collect unlabeled or weakly labeled IMU data to model human motions.
For video or text modalities, the "pretrain and adapt" approach utilizes large volumes of unlabeled or weakly labeled data for pretraining, building a strong feature extractor, followed by adaptation to specific tasks using limited labeled data.
This approach has not been widely adopted in the IMU domain for two reasons: (1) pretraining methods are poorly understood in the context of IMU, and
- Score: 7.896850422430362
- License:
- Abstract: Sensing human motions through Inertial Measurement Units (IMUs) embedded in personal devices has enabled significant applications in health and wellness. While labeled IMU data is scarce, we can collect unlabeled or weakly labeled IMU data to model human motions. For video or text modalities, the "pretrain and adapt" approach utilizes large volumes of unlabeled or weakly labeled data for pretraining, building a strong feature extractor, followed by adaptation to specific tasks using limited labeled data. This approach has not been widely adopted in the IMU domain for two reasons: (1) pretraining methods are poorly understood in the context of IMU, and (2) open-source pretrained models that generalize across datasets are rarely publicly available. In this paper, we aim to address the first issue by proposing PRIMUS, a method for PRetraining IMU encoderS. We conduct a systematic and unified evaluation of various self-supervised and multimodal learning pretraining objectives. Our findings indicate that using PRIMUS, which combines self-supervision, multimodal supervision, and nearest-neighbor supervision, can significantly enhance downstream performance. With fewer than 500 labeled samples per class, PRIMUS effectively enhances downstream performance by up to 15% in held-out test data, compared to the state-of-the-art multimodal training method. To benefit the broader community, our code and pre-trained IMU encoders will be made publicly available at github.com/nokia-bell-labs upon publication.
Related papers
- Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts [104.9871176044644]
Masked Autoencoder(MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training.
We propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE)
MoCE trains each expert only with semantically relevant images by using cluster-conditional gates.
arXiv Detail & Related papers (2024-02-08T03:46:32Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
We propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training)
Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation.
arXiv Detail & Related papers (2022-11-17T18:59:49Z) - IMG2IMU: Translating Knowledge from Large-Scale Images to IMU Sensing
Applications [6.865654843241631]
We propose IMG2IMU that adapts pre-trained representation from large-scale images to diverse IMU sensing tasks.
We convert the sensor data into visually interpretable spectrograms for the model to utilize the knowledge gained from vision.
IMG2IMU outperforms the baselines pre-trained on sensor data by an average of 9.6%p F1-score.
arXiv Detail & Related papers (2022-09-02T11:00:23Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Neural Semi-supervised Learning for Text Classification Under
Large-Scale Pretraining [51.19885385587916]
We conduct studies on semi-supervised learning in the task of text classification under the context of large-scale LM pretraining.
Our work marks an initial step in understanding the behavior of semi-supervised learning models under the context of large-scale pretraining.
arXiv Detail & Related papers (2020-11-17T13:39:05Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.