Forecasting Application Counts in Talent Acquisition Platforms: Harnessing Multimodal Signals using LMs
- URL: http://arxiv.org/abs/2411.15182v1
- Date: Tue, 19 Nov 2024 01:18:32 GMT
- Title: Forecasting Application Counts in Talent Acquisition Platforms: Harnessing Multimodal Signals using LMs
- Authors: Md Ahsanul Kabir, Kareem Abdelfatah, Shushan He, Mohammed Korayem, Mohammad Al Hasan,
- Abstract summary: We discuss a novel task in the recruitment domain, namely, application count forecasting.
We show that existing auto-regressive based time series forecasting methods perform poorly for this task.
We propose a multimodal LM-based model which fuses job-posting metadata of various modalities through a simple encoder.
- Score: 5.7623855432001445
- License:
- Abstract: As recruitment and talent acquisition have become more and more competitive, recruitment firms have become more sophisticated in using machine learning (ML) methodologies for optimizing their day to day activities. But, most of published ML based methodologies in this area have been limited to the tasks like candidate matching, job to skill matching, job classification and normalization. In this work, we discuss a novel task in the recruitment domain, namely, application count forecasting, motivation of which comes from designing of effective outreach activities to attract qualified applicants. We show that existing auto-regressive based time series forecasting methods perform poorly for this task. Henceforth, we propose a multimodal LM-based model which fuses job-posting metadata of various modalities through a simple encoder. Experiments from large real-life datasets from CareerBuilder LLC show the effectiveness of the proposed method over existing state-of-the-art methods.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Few-shot Multi-Task Learning of Linear Invariant Features with Meta Subspace Pursuit [9.421309916099428]
We propose a new algorithm called Meta Subspace Pursuit (abbreviated as Meta-SP)
Under this assumption, we propose a new algorithm, called Meta Subspace Pursuit (abbreviated as Meta-SP)
arXiv Detail & Related papers (2024-09-04T13:44:22Z) - FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents [64.1759086221016]
We present FlowBench, the first benchmark for workflow-guided planning.
FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats.
Results indicate that current LLM agents need considerable improvements for satisfactory planning.
arXiv Detail & Related papers (2024-06-21T06:13:00Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
We propose a robust multilingual model to improve the quality of search results.
In pre-training stage, we adopt mlm task, classification task and contrastive learning task.
In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop)
arXiv Detail & Related papers (2023-01-31T07:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.