An accuracy improving method for advertising click through rate prediction based on enhanced xDeepFM model
- URL: http://arxiv.org/abs/2411.15223v1
- Date: Thu, 21 Nov 2024 03:21:29 GMT
- Title: An accuracy improving method for advertising click through rate prediction based on enhanced xDeepFM model
- Authors: Xiaowei Xi, Song Leng, Yuqing Gong, Dalin Li,
- Abstract summary: This paper proposes an improved CTR prediction model based on the xDeepFM architecture.
By integrating a multi-head attention mechanism, the model can simultaneously focus on different aspects of feature interactions.
Experimental results on the Criteo dataset demonstrate that the proposed model outperforms other state-of-the-art methods.
- Score: 0.0
- License:
- Abstract: Advertising click-through rate (CTR) prediction aims to forecast the probability that a user will click on an advertisement in a given context, thus providing enterprises with decision support for product ranking and ad placement. However, CTR prediction faces challenges such as data sparsity and class imbalance, which adversely affect model training effectiveness. Moreover, most current CTR prediction models fail to fully explore the associations among user history, interests, and target advertisements from multiple perspectives, neglecting important information at different levels. To address these issues, this paper proposes an improved CTR prediction model based on the xDeepFM architecture. By integrating a multi-head attention mechanism, the model can simultaneously focus on different aspects of feature interactions, enhancing its ability to learn intricate patterns without significantly increasing computational complexity. Furthermore, replacing the linear model with a Factorization Machine (FM) model improves the handling of high-dimensional sparse data by flexibly capturing both first-order and second-order feature interactions. Experimental results on the Criteo dataset demonstrate that the proposed model outperforms other state-of-the-art methods, showing significant improvements in both AUC and Logloss metrics. This enhancement facilitates better mining of implicit relationships between features and improves the accuracy of advertising CTR prediction.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
The Inter-Intra Modal Measure (IIMM) functions as a strong predictor of performance changes with fine-tuning.
Fine-tuning on tasks with higher IIMM scores produces greater in-domain performance gains but also induces more severe out-of-domain performance degradation.
With only a single forward pass of the target data, practitioners can leverage this key insight to evaluate the degree to which a model can be expected to improve following fine-tuning.
arXiv Detail & Related papers (2024-07-22T15:35:09Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Iterative Boosting Deep Neural Networks for Predicting Click-Through
Rate [15.90144113403866]
The click-through rate (CTR) reflects the ratio of clicks on a specific item to its total number of views.
XdBoost is an iterative three-stage neural network model influenced by the traditional machine learning boosting mechanism.
arXiv Detail & Related papers (2020-07-26T09:41:16Z) - Feature Interaction based Neural Network for Click-Through Rate
Prediction [5.095988654970358]
We propose a Feature Interaction based Neural Network (FINN) which is able to model feature interaction via a 3-dimention relation tensor.
We show that our deep FINN model outperforms other state-of-the-art deep models such as PNN and DeepFM.
It also indicates that our models can effectively learn the feature interactions, and achieve better performances in real-world datasets.
arXiv Detail & Related papers (2020-06-07T03:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.