Osteoporosis Prediction from Hand X-ray Images Using Segmentation-for-Classification and Self-Supervised Learning
- URL: http://arxiv.org/abs/2412.05345v1
- Date: Fri, 06 Dec 2024 13:47:29 GMT
- Title: Osteoporosis Prediction from Hand X-ray Images Using Segmentation-for-Classification and Self-Supervised Learning
- Authors: Ung Hwang, Chang-Hun Lee, Kijung Yoon,
- Abstract summary: Osteoporosis is a chronic metabolic bone disease that often remains undiagnosed and untreated due to limited access to bone mineral density tests like Dual-energy X-ray absorptiometry (DXA)
We present a method to predict osteoporosis using hand and wrist X-ray images, which are both widely accessible and affordable.
- Score: 3.267409660494317
- License:
- Abstract: Osteoporosis is a widespread and chronic metabolic bone disease that often remains undiagnosed and untreated due to limited access to bone mineral density (BMD) tests like Dual-energy X-ray absorptiometry (DXA). In response to this challenge, current advancements are pivoting towards detecting osteoporosis by examining alternative indicators from peripheral bone areas, with the goal of increasing screening rates without added expenses or time. In this paper, we present a method to predict osteoporosis using hand and wrist X-ray images, which are both widely accessible and affordable, though their link to DXA-based data is not thoroughly explored. We employ a sophisticated image segmentation model that utilizes a mixture of probabilistic U-Net decoders, specifically designed to capture predictive uncertainty in the segmentation of the ulna, radius, and metacarpal bones. This model is formulated as an optimal transport (OT) problem, enabling it to handle the inherent uncertainties in image segmentation more effectively. Further, we adopt a self-supervised learning (SSL) approach to extract meaningful representations without the need for explicit labels, and move on to classify osteoporosis in a supervised manner. Our method is evaluated on a dataset with 192 individuals, cross-referencing their verified osteoporosis conditions against the standard DXA test. With a notable classification score, this integration of uncertainty-aware segmentation and self-supervised learning represents a pioneering effort in leveraging vision-based techniques for the early detection of osteoporosis from peripheral skeletal sites.
Related papers
- Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs [0.0]
Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs.
This study aims to automate SI identification from radiographs using machine learning algorithms.
arXiv Detail & Related papers (2024-11-22T08:44:43Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Osteoporosis Prediction from Hand and Wrist X-rays using Image
Segmentation and Self-Supervised Learning [2.9909606678660587]
Osteoporosis is a chronic metabolic bone disease that often remains undiagnosed and untreated due to limited access to bone mineral density tests like Dual-energy X-ray absorptiometry (DXA)
We present a method to predict osteoporosis using hand and wrist X-ray images, which are both widely accessible and affordable.
arXiv Detail & Related papers (2023-11-12T13:19:00Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - BMD-GAN: Bone mineral density estimation using x-ray image decomposition
into projections of bone-segmented quantitative computed tomography using
hierarchical learning [1.8762753243053634]
We propose an approach using the QCT for training a generative adversarial network (GAN) and decomposing an x-ray image into a projection of bone-segmented QCT.
The evaluation of 200 patients with osteoarthritis using the proposed method demonstrated a Pearson correlation coefficient of 0.888 between the predicted and ground truth.
arXiv Detail & Related papers (2022-07-07T10:33:12Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Opportunistic Screening of Osteoporosis Using Plain Film Chest X-ray [23.41545684473636]
Osteoporosis is a chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density examinations.
In this paper, we propose a method to predict BMD from Chest X-ray (CXR), one of the most common, accessible, and low-cost medical image examinations.
arXiv Detail & Related papers (2021-04-05T01:25:23Z) - Semi-Supervised Learning for Bone Mineral Density Estimation in Hip
X-ray Images [19.17169803995019]
Bone mineral density is a clinically critical indicator of osteoporosis.
Due to the limited accessibility of DEXA machines and examinations, osteoporosis is often under-diagnosed and under-treated.
arXiv Detail & Related papers (2021-03-24T20:59:54Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.