論文の概要: AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
- arxiv url: http://arxiv.org/abs/2411.15497v1
- Date: Sat, 23 Nov 2024 09:04:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:13.202757
- Title: AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
- Title(参考訳): AeroGen: 拡散駆動データ生成によるリモートセンシングオブジェクト検出の強化
- Authors: Datao Tang, Xiangyong Cao, Xuan Wu, Jialin Li, Jing Yao, Xueru Bai, Dongsheng Jiang, Yin Li, Deyu Meng,
- Abstract要約: リモートセンシング画像オブジェクト検出(RSIOD)は、衛星や空中画像内の特定の物体を特定し、特定することを目的としている。
現在のRSIODデータセットにはラベル付きデータが不足しており、現在の検出アルゴリズムのパフォーマンスを著しく制限している。
本稿では,RSIODに適したレイアウト制御可能な拡散生成モデル(AeroGen)を提案する。
- 参考スコア(独自算出の注目度): 43.583735469794675
- License:
- Abstract: Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7\%, 4.3\%, and 2.43\%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.
- Abstract(参考訳): リモートセンシング画像オブジェクト検出(RSIOD)は、衛星や空中画像内の特定の物体を特定し、特定することを目的としている。
しかし、現在のRSIODデータセットにはラベル付きデータが不足しており、現在の検出アルゴリズムのパフォーマンスが著しく制限されている。
データ拡張や半教師付き学習といった既存の技術は、この不足問題をある程度軽減することができるが、それらは高品質なラベル付きデータに大きく依存しており、希少なオブジェクトクラスではより悪い結果をもたらす。
本稿では, RSIODに適したレイアウト制御可能な拡散生成モデル(AeroGen)を提案する。
我々の知る限り、AeroGenは水平および回転するバウンディングボックス条件の生成を同時にサポートする最初のモデルであり、それによって特定のレイアウトとオブジェクトカテゴリの要求を満たす高品質な合成画像を生成することができる。
さらに、多様性条件付きジェネレータとフィルタリング機構を統合し、生成データの多様性と品質を両立させるエンドツーエンドデータ拡張フレームワークを提案する。
実験結果から,本手法で生成した合成データは高品質で多様性が高いことが明らかとなった。
さらに、合成RSIODデータにより、既存のRSIODモデルの検出性能が大幅に向上し、すなわち、DIOR、DIOR-R、HRSCデータセットのmAP値がそれぞれ3.7\%、4.3\%、および2.43\%向上する。
コードはhttps://github.com/Sonettoo/AeroGen.comで入手できる。
関連論文リスト
- DODA: Diffusion for Object-detection Domain Adaptation in Agriculture [4.549305421261851]
本稿では,農業の新しい領域を対象とした高品質なオブジェクト検出データを生成するデータシンセサイザーであるDODAを提案する。
具体的には、画像としてレイアウトを符号化することでレイアウト・ツー・イメージの制御性を向上し、ラベルの品質を向上させる。
論文 参考訳(メタデータ) (2024-03-27T08:16:33Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Modelはオブジェクト検出のためのスケーラブルなデータエンジンである。
DiffusionEngine(DE)は、高品質な検出指向のトレーニングペアを単一のステージで提供する。
論文 参考訳(メタデータ) (2023-09-07T17:55:01Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
合成スペクトルデータ生成分野におけるGANの応用について報告する。
CWGANは,低データ方式の性能向上を図り,サロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-07-14T16:27:24Z) - Detecting Anomalies using Generative Adversarial Networks on Images [0.0]
本稿では,新しいGANに基づく異常検出モデルを提案する。
通常の(非非正則な)画像を使用して、入力画像が異常/脅威オブジェクトを含むかどうかを検知する正常性について学習する。
CIFAR-10、MVTec AD(産業応用用)、SIXray(X線バッグセキュリティ用)の3つのデータセットで実験が行われた。
論文 参考訳(メタデータ) (2022-11-24T21:52:25Z) - Synthetic Data Supervised Salient Object Detection [40.991558165686136]
そこで我々は,SODGANという,高品質な画像マスク対を無限に生成できる新しいSOD手法を提案する。
SODGANは、生成モデルから直接生成された合成データを用いて、SODに初めて取り組みます。
提案手法は, 半弱弱教師付き手法において新たなSOTA性能を実現し, 完全教師付きSOTA手法よりも優れる。
論文 参考訳(メタデータ) (2022-10-25T08:36:29Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。