Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
- URL: http://arxiv.org/abs/2411.15519v1
- Date: Sat, 23 Nov 2024 10:46:52 GMT
- Title: Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
- Authors: Ling Chen,
- Abstract summary: This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management.
FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance.
Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework.
- Score: 7.08506873242564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management, with a focus on improving the estimation of Value at Risk (VaR) and Expected Shortfall (ES). FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance. Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework. The results demonstrate that FE-GAN significantly outperforms traditional architectures in both VaR and ES estimation. Tail-GAN, leveraging its task-specific loss function, consistently outperforms WGAN in ES estimation, while both models exhibit similar performance in VaR estimation. Despite these promising results, the study acknowledges limitations, including reliance on highly correlated temporal data and restricted applicability to other domains. Future research directions include exploring alternative input generation methods, dynamic forecasting models, and advanced neural network architectures to further enhance GANs-based financial risk estimation.
Related papers
- On the Convergence of (Stochastic) Gradient Descent for Kolmogorov--Arnold Networks [56.78271181959529]
Kolmogorov--Arnold Networks (KANs) have gained significant attention in the deep learning community.
Empirical investigations demonstrate that KANs optimized via gradient descent (SGD) are capable of achieving near-zero training loss.
arXiv Detail & Related papers (2024-10-10T15:34:10Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
Long memory and non-linear realized volatility model class is proposed for Value at Risk (VaR) forecasting.
This model, referred to as RNN-HAR, extends the heterogeneous autoregressive (HAR) model.
Loss-based generalized Bayesian inference with Sequential Monte Carlo is employed for model estimation and sequential prediction.
arXiv Detail & Related papers (2024-08-24T14:17:31Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Distributional Refinement Network: Distributional Forecasting via Deep Learning [0.8142555609235358]
A key task in actuarial modelling involves modelling the distributional properties of losses.
We propose a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model with a flexible neural network.
DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability.
arXiv Detail & Related papers (2024-06-03T05:14:32Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Power grid operational risk assessment using graph neural network
surrogates [5.202524136984542]
We investigate the utility of graph neural networks (GNNs) as proxies of power grid operational decision-making algorithms.
GNNs are capable of providing fast and accurate prediction of QoIs.
The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN surrogate has the potential to be applied in real-time and hours-ahead.
arXiv Detail & Related papers (2023-11-21T03:02:30Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
Generative Adversarial Networks (GANs) have achieved a great success in unsupervised learning.
This paper provides approximation and statistical guarantees of GANs for the estimation of data distributions with densities in a H"older space.
arXiv Detail & Related papers (2020-02-10T16:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.