Improving Transferable Targeted Attacks with Feature Tuning Mixup
- URL: http://arxiv.org/abs/2411.15553v1
- Date: Sat, 23 Nov 2024 13:18:25 GMT
- Title: Improving Transferable Targeted Attacks with Feature Tuning Mixup
- Authors: Kaisheng Liang, Xuelong Dai, Yanjie Li, Dong Wang, Bin Xiao,
- Abstract summary: Deep neural networks exhibit vulnerability to examples that can transfer across different models.
We propose Feature Tuning Mixup (FTM) to enhance targeted attack transferability.
Our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
- Score: 12.707753562907534
- License:
- Abstract: Deep neural networks exhibit vulnerability to adversarial examples that can transfer across different models. A particularly challenging problem is developing transferable targeted attacks that can mislead models into predicting specific target classes. While various methods have been proposed to enhance attack transferability, they often incur substantial computational costs while yielding limited improvements. Recent clean feature mixup methods use random clean features to perturb the feature space but lack optimization for disrupting adversarial examples, overlooking the advantages of attack-specific perturbations. In this paper, we propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability by combining both random and optimized noises in the feature space. FTM introduces learnable feature perturbations and employs an efficient stochastic update strategy for optimization. These learnable perturbations facilitate the generation of more robust adversarial examples with improved transferability. We further demonstrate that attack performance can be enhanced through an ensemble of multiple FTM-perturbed surrogate models. Extensive experiments on the ImageNet-compatible dataset across various models demonstrate that our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
Related papers
- Improving the Transferability of Adversarial Examples by Feature Augmentation [6.600860987969305]
We propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs.
Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient.
Our method can be combined with existing gradient attacks to augment their performance further.
arXiv Detail & Related papers (2024-07-09T09:41:40Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z) - Towards Transferable Adversarial Attacks with Centralized Perturbation [4.689122927344728]
Adversa transferability enables black-box attacks on unknown victim deep neural networks (DNNs)
Current transferable attacks create adversarial perturbation over the entire image, resulting in excessive noise that overfit the source model.
We propose a transferable adversarial attack with fine-grained perturbation optimization in the frequency domain, creating centralized perturbation.
arXiv Detail & Related papers (2023-12-11T08:25:50Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
adversarial examples introduce imperceptible perturbations to benign samples, deceiving predictions.
Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving predictions.
We introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images.
arXiv Detail & Related papers (2023-11-18T09:10:07Z) - Introducing Competition to Boost the Transferability of Targeted
Adversarial Examples through Clean Feature Mixup [21.41516849588037]
adversarial examples can cause incorrect predictions through subtle input modifications.
Deep neural networks are susceptible to adversarial examples, which can cause incorrect predictions through subtle input modifications.
We propose introducing competition into the optimization process to enhance the transferability of targeted adversarial examples.
arXiv Detail & Related papers (2023-05-24T07:54:44Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Enhancing Targeted Attack Transferability via Diversified Weight Pruning [0.3222802562733786]
Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images.
With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker.
Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples.
arXiv Detail & Related papers (2022-08-18T07:25:48Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations.
In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system.
We propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks.
arXiv Detail & Related papers (2020-06-22T10:44:05Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.