論文の概要: Transparent but Powerful: Explainability, Accuracy, and Generalizability in ADHD Detection from Social Media Data
- arxiv url: http://arxiv.org/abs/2411.15586v1
- Date: Sat, 23 Nov 2024 15:26:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:50.809876
- Title: Transparent but Powerful: Explainability, Accuracy, and Generalizability in ADHD Detection from Social Media Data
- Title(参考訳): 透明だが強力:ソーシャルメディアデータからのADHD検出における説明可能性,正確性,一般化性
- Authors: D. Wiechmann, E. Kempa, E. Kerz, Y. Qiao,
- Abstract要約: 注意欠陥・高活動障害(ADHD: Attention-deficit/hyperactive disorder)は、小児と成人の両方に影響を及ぼす精神疾患である。
人工知能の最近の進歩、特に自然言語処理(NLP)と機械学習(ML)は、ソーシャルメディアデータを用いたスケーラブルで非侵襲的なADHDスクリーニング方法に対する有望なソリューションを提供する。
本稿では,浅層学習モデルと深層学習アプローチを併用したADHD検出に関する総合的研究を行い,ADHD関連ソーシャルメディアテキストの言語パターンを解析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent mental health condition affecting both children and adults, yet it remains severely underdiagnosed. Recent advances in artificial intelligence, particularly in Natural Language Processing (NLP) and Machine Learning (ML), offer promising solutions for scalable and non-invasive ADHD screening methods using social media data. This paper presents a comprehensive study on ADHD detection, leveraging both shallow machine learning models and deep learning approaches, including BiLSTM and transformer-based models, to analyze linguistic patterns in ADHD-related social media text. Our results highlight the trade-offs between interpretability and performance across different models, with BiLSTM offering a balance of transparency and accuracy. Additionally, we assess the generalizability of these models using cross-platform data from Reddit and Twitter, uncovering key linguistic features associated with ADHD that could contribute to more effective digital screening tools.
- Abstract(参考訳): 注意欠陥・高活動障害(ADHD: Attention-deficit/hyperactive disorder)は、小児と成人の両方に影響を及ぼす精神疾患である。
人工知能の最近の進歩、特に自然言語処理(NLP)と機械学習(ML)は、ソーシャルメディアデータを用いたスケーラブルで非侵襲的なADHDスクリーニング方法に対する有望なソリューションを提供する。
本稿では,浅層学習モデルと深層学習アプローチ(BiLSTMやトランスフォーマーベースモデルなど)を併用したADHD検出の総合的研究を行い,ADHD関連ソーシャルメディアテキストの言語パターンを解析する。
我々の結果は、さまざまなモデル間での解釈可能性とパフォーマンスのトレードオフを強調し、BiLSTMは透明性と精度のバランスを提供します。
さらに、RedditとTwitterのクロスプラットフォームデータを用いて、これらのモデルの一般化可能性を評価し、より効果的なデジタルスクリーニングツールに寄与するADHDに関連する重要な言語機能を明らかにする。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - A New Perspective on ADHD Research: Knowledge Graph Construction with LLMs and Network Based Insights [0.4915744683251151]
アテンション・デフィシット・ハイパーアクティビティ障害(ADHD: Attention-Deficit/Hyper Activity Disorder)は、複雑な症状と様々な要因から研究が難しい疾患である。
このトピックについてより深い洞察を得るために,ADHDの総合知識グラフ(KG)上でネットワーク分析を行った。
kコア技術を含む分析では、障害を理解する中心となる重要なノードと関係が特定された。
論文 参考訳(メタデータ) (2024-09-19T15:50:22Z) - Refining ADHD diagnosis with EEG: The impact of preprocessing and temporal segmentation on classification accuracy [41.94295877935867]
本研究は,脳波によるADHD診断の信頼性向上における前処理とセグメンテーションの重要性を強調した。
後の脳波セグメントで訓練されたモデルは、ADHDを識別する際の認知疲労の潜在的な役割を示唆し、かなり高い精度を実現した。
論文 参考訳(メタデータ) (2024-07-11T09:07:22Z) - Enhancing ASD detection accuracy: a combined approach of machine
learning and deep learning models with natural language processing [0.0]
自閉症スペクトラム障害(ASD)の診断における人工知能(AI)の利用について検討した。
ソーシャルメディア上のテキスト入力からASDを検出する機械学習(ML)とディープラーニング(DL)に焦点を当てた。
我々のAIモデルは精度が高く、88%の成功率でASDの個人からテキストを識別できた。
論文 参考訳(メタデータ) (2024-03-06T09:57:42Z) - Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls
and Opportunities [50.231837687221685]
自己教師付き学習(SSL)は、機械学習とその多くの現実世界のアプリケーションに変化をもたらした。
非教師なし異常検出(AD)は、自己生成性擬似異常によりSSLにも乗じている。
論文 参考訳(メタデータ) (2023-08-28T07:55:01Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、現在世界中で普及している神経発達障害の一つ。
この疾患の早期発見は、発症治療に役立ち、正常な生活を導くのに役立つ。
論文 参考訳(メタデータ) (2023-03-09T17:49:37Z) - iPAL: A Machine Learning Based Smart Healthcare Framework For Automatic
Diagnosis Of Attention Deficit/Hyperactivity Disorder (ADHD) [15.675307032144064]
この研究は、ADHD200データセット上のニューラルネットワークやSVMモデルのような機械学習技術を組み合わせてADHDを診断する方法を探究する。
本研究では,SVMモデルを用いた表現型データに対してマルチクラス分類を行う。ロジスティック回帰,KNN,AdaBoostなどの他の教師あり学習手法と比較して,表現型データに対して良好な結果が得られた。
論文 参考訳(メタデータ) (2023-02-01T09:29:20Z) - Detecting Autism Spectrum Disorders with Machine Learning Models Using
Speech Transcripts [0.0]
自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、子どもの相互作用、コミュニケーション、他者との交流に影響を及ぼす神経発達障害として定義される。
ASDを正確に診断する現在の方法は、侵襲的、時間的、退屈である。
音声を使った機械学習モデル、顔からのコンピュータービジョン、網膜、脳MRI画像など、この疾患を正確にタイムリーに検出する新しい技術が急速に発展しつつある。
論文 参考訳(メタデータ) (2021-10-07T09:10:15Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。