Comparative Analysis of Resource-Efficient CNN Architectures for Brain Tumor Classification
- URL: http://arxiv.org/abs/2411.15596v1
- Date: Sat, 23 Nov 2024 16:13:40 GMT
- Title: Comparative Analysis of Resource-Efficient CNN Architectures for Brain Tumor Classification
- Authors: Md Ashik Khan, Ankit Kumar Verma,
- Abstract summary: This study presents a comparative analysis of effective yet simple Convolutional Neural Network (CNN) architecture and pre-trained ResNet18, and VGG16 models for brain tumor classification.
The custom CNN architecture, despite its lower complexity, demonstrates competitive performance with the pre-trained ResNet18 and VGG16 models.
- Score: 0.0
- License:
- Abstract: Accurate brain tumor classification in MRI images is critical for timely diagnosis and treatment planning. While deep learning models like ResNet-18, VGG-16 have shown high accuracy, they often come with increased complexity and computational demands. This study presents a comparative analysis of effective yet simple Convolutional Neural Network (CNN) architecture and pre-trained ResNet18, and VGG16 model for brain tumor classification using two publicly available datasets: Br35H:: Brain Tumor Detection 2020 and Brain Tumor MRI Dataset. The custom CNN architecture, despite its lower complexity, demonstrates competitive performance with the pre-trained ResNet18 and VGG16 models. In binary classification tasks, the custom CNN achieved an accuracy of 98.67% on the Br35H dataset and 99.62% on the Brain Tumor MRI Dataset. For multi-class classification, the custom CNN, with a slight architectural modification, achieved an accuracy of 98.09%, on the Brain Tumor MRI Dataset. Comparatively, ResNet18 and VGG16 maintained high performance levels, but the custom CNNs provided a more computationally efficient alternative. Additionally,the custom CNNs were evaluated using few-shot learning (0, 5, 10, 15, 20, 40, and 80 shots) to assess their robustness, achieving notable accuracy improvements with increased shots. This study highlights the potential of well-designed, less complex CNN architectures as effective and computationally efficient alternatives to deeper, pre-trained models for medical imaging tasks, including brain tumor classification. This study underscores the potential of custom CNNs in medical imaging tasks and encourages further exploration in this direction.
Related papers
- Residual Vision Transformer (ResViT) Based Self-Supervised Learning Model for Brain Tumor Classification [0.08192907805418585]
Self-supervised learning models provide data-efficient and remarkable solutions to limited dataset problems.
This paper introduces a generative SSL model for brain tumor classification in two stages.
The proposed model attains the highest accuracy, achieving 90.56% on the BraTs dataset with T1 sequence, 98.53% on the Figshare, and 98.47% on the Kaggle brain tumor datasets.
arXiv Detail & Related papers (2024-11-19T21:42:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - Streamlining Brain Tumor Classification with Custom Transfer Learning in
MRI Images [1.534667887016089]
Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain.
In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks.
arXiv Detail & Related papers (2023-10-19T19:13:04Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
arXiv Detail & Related papers (2022-04-26T13:20:42Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique.
CNNs require large annotated datasets for training.
Self-supervised learning strategies can leverage unlabeled data for training.
arXiv Detail & Related papers (2021-05-24T12:27:06Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.