Deep Brain Net: An Optimized Deep Learning Model for Brain tumor Detection in MRI Images Using EfficientNetB0 and ResNet50 with Transfer Learning
- URL: http://arxiv.org/abs/2507.07011v1
- Date: Wed, 09 Jul 2025 16:42:26 GMT
- Title: Deep Brain Net: An Optimized Deep Learning Model for Brain tumor Detection in MRI Images Using EfficientNetB0 and ResNet50 with Transfer Learning
- Authors: Daniel Onah, Ravish Desai,
- Abstract summary: We propose Deep Brain Net, a novel deep learning system designed to optimize performance in the detection of brain tumors.<n>The model integrates the strengths of two advanced neural network architectures which are EfficientNetB0 and ResNet50.<n>Extensive experiments performed on publicly available MRI datasets demonstrate that Deep Brain Net consistently outperforms existing state of the art methods in terms of classification accuracy, precision, recall, and computational efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning has shown great promise in the automated detection and classification of brain tumors from MRI images. However, achieving high accuracy and computational efficiency remains a challenge. In this research, we propose Deep Brain Net, a novel deep learning system designed to optimize performance in the detection of brain tumors. The model integrates the strengths of two advanced neural network architectures which are EfficientNetB0 and ResNet50, combined with transfer learning to improve generalization and reduce training time. The EfficientNetB0 architecture enhances model efficiency by utilizing mobile inverted bottleneck blocks, which incorporate depth wise separable convolutions. This design significantly reduces the number of parameters and computational cost while preserving the ability of models to learn complex feature representations. The ResNet50 architecture, pre trained on large scale datasets like ImageNet, is fine tuned for brain tumor classification. Its use of residual connections allows for training deeper networks by mitigating the vanishing gradient problem and avoiding performance degradation. The integration of these components ensures that the proposed system is both computationally efficient and highly accurate. Extensive experiments performed on publicly available MRI datasets demonstrate that Deep Brain Net consistently outperforms existing state of the art methods in terms of classification accuracy, precision, recall, and computational efficiency. The result is an accuracy of 88 percent, a weighted F1 score of 88.75 percent, and a macro AUC ROC score of 98.17 percent which demonstrates the robustness and clinical potential of Deep Brain Net in assisting radiologists with brain tumor diagnosis.
Related papers
- An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation [0.0]
We present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages.<n>We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50.<n>The models achieved strong performance, with training accuracy reaching 93% and validation accuracy up to 88%.
arXiv Detail & Related papers (2025-06-10T18:19:56Z) - Spiking Neural Network for Intra-cortical Brain Signal Decoding [20.79539749730775]
Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces.<n>This paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding.
arXiv Detail & Related papers (2025-04-12T13:41:59Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation [0.0]
This paper proposes a tumor segmentation framework including a novel shallow encoder and decoder network named SEDNet.
The highlights of SEDNet include sufficiency in hierarchical convolutional downsampling and selective skip mechanism for cost-efficient and effective brain tumor semantic segmentation.
With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis.
arXiv Detail & Related papers (2024-01-24T11:57:25Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Streamlining Brain Tumor Classification with Custom Transfer Learning in
MRI Images [1.534667887016089]
Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain.
In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks.
arXiv Detail & Related papers (2023-10-19T19:13:04Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
Inaccurate identification of brain tumors can significantly diminish life expectancy.<n>This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors.<n>Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively.
arXiv Detail & Related papers (2023-05-22T09:08:59Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms.
Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images.
The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%.
arXiv Detail & Related papers (2022-06-08T14:29:06Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
arXiv Detail & Related papers (2022-04-26T13:20:42Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian
Optimization [39.56814839510978]
We propose a meta-learning method for Bayesian optimization with neural network-based kernels.
Our model is trained by a reinforcement learning framework from multiple tasks.
In experiments using three text document datasets, we demonstrate that the proposed method achieves better BO performance than the existing methods.
arXiv Detail & Related papers (2021-11-01T00:42:31Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.