On the Boundary Feasibility for PDE Control with Neural Operators
- URL: http://arxiv.org/abs/2411.15643v1
- Date: Sat, 23 Nov 2024 20:15:51 GMT
- Title: On the Boundary Feasibility for PDE Control with Neural Operators
- Authors: Hanjiang Hu, Changliu Liu,
- Abstract summary: We introduce a general neural boundary control barrier function (BCBF) to ensure the feasibility of the trajectorywise constraint satisfaction of boundary output.
Based on a neural operator modeling the transfer function from boundary control input to output trajectories, we show that the change in the BCBF depends linearly on the change in input boundary.
Experiments under challenging hyperbolic, parabolic and Navier-Stokes PDE dynamics environments validate the effectiveness of the proposed method.
- Score: 7.537923263907072
- License:
- Abstract: The physical world dynamics are generally governed by underlying partial differential equations (PDEs) with unknown analytical forms in science and engineering problems. Neural network based data-driven approaches have been heavily studied in simulating and solving PDE problems in recent years, but it is still challenging to move forward from understanding to controlling the unknown PDE dynamics. PDE boundary control instantiates a simplified but important problem by only focusing on PDE boundary conditions as the control input and output. However, current model-free PDE controllers cannot ensure the boundary output satisfies some given user-specified safety constraint. To this end, we propose a safety filtering framework to guarantee the boundary output stays within the safe set for current model-free controllers. Specifically, we first introduce a general neural boundary control barrier function (BCBF) to ensure the feasibility of the trajectorywise constraint satisfaction of boundary output. Based on a neural operator modeling the transfer function from boundary control input to output trajectories, we show that the change in the BCBF depends linearly on the change in input boundary, so quadratic programming-based safety filtering can be done for pre-trained model-free controllers. Extensive experiments under challenging hyperbolic, parabolic and Navier-Stokes PDE dynamics environments validate the effectiveness of the proposed method in achieving better general performance and boundary constraint satisfaction compared to the model-free controller baselines.
Related papers
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
arXiv Detail & Related papers (2024-10-03T17:50:19Z) - Neural Operators for Boundary Stabilization of Stop-and-go Traffic [1.90298817989995]
This paper introduces a novel approach to PDE boundary control design using neural operators.
We present two distinct neural operator learning schemes aimed at stabilizing the traffic PDE system.
It is proved that the NO-based closed-loop system is practical stable under certain approximation accuracy conditions in NO-learning.
arXiv Detail & Related papers (2023-12-16T08:18:39Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - The Hard-Constraint PINNs for Interface Optimal Control Problems [1.6237916898865998]
We show that PINNs can be applied to solve optimal control problems with interfaces and some control constraints.
The resulting algorithm is mesh-free and scalable to different PDEs.
arXiv Detail & Related papers (2023-08-13T07:56:01Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - A Feasibility-Driven Approach to Control-Limited DDP [22.92789455838942]
We show that BOX-FDDP regulates the dynamic feasibility during the numerical optimization and ensures control limits.
We demonstrate the benefits of our approach by generating complex and athletic motions for quadruped and humanoid robots.
arXiv Detail & Related papers (2020-10-01T13:56:14Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.