Circuit design in biology and machine learning. II. Anomaly detection
- URL: http://arxiv.org/abs/2411.15647v1
- Date: Sat, 23 Nov 2024 20:36:57 GMT
- Title: Circuit design in biology and machine learning. II. Anomaly detection
- Authors: Steven A. Frank,
- Abstract summary: Anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs.
This study builds on machine learning techniques to develop a conceptual framework for biological circuits.
I focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale.
- Score: 0.0
- License:
- Abstract: Anomaly detection is a well-established field in machine learning, identifying observations that deviate from typical patterns. The principles of anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs. However, this approach has received limited attention in analyses of cellular and physiological circuits. This study builds on machine learning techniques -- such as dimensionality reduction, boosted decision trees, and anomaly classification -- to develop a conceptual framework for biological circuits. One problem is that machine learning circuits tend to be unrealistically large for use by cellular and physiological systems. I therefore focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale. Through illustrative models, I demonstrate that small circuits can provide useful classification of anomalies. The analysis also shows how principles from machine learning -- such as temporal and atemporal anomaly detection, multivariate signal integration, and hierarchical decision-making cascades -- can inform hypotheses about the design and evolution of cellular circuits. This interdisciplinary approach enhances our understanding of cellular circuits and highlights the universal nature of computational strategies across biological and artificial systems.
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.
logical reasoning that can directly support are quite limited in learning, approximation and prediction.
One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
We propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries.
We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a range of applications.
Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
arXiv Detail & Related papers (2023-12-14T18:57:16Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities [18.434430658837258]
We have witnessed a rapid expansion of representation learning techniques into modeling, analysis, and learning with networks.
In this review, we put forward an observation that long-standing principles of network biology and medicine can provide the conceptual grounding for representation learning.
We synthesize a spectrum of algorithmic approaches that leverage topological features to embed networks into compact vector spaces.
arXiv Detail & Related papers (2021-04-11T00:20:00Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
We conduct an empirical study based on the real-world task of drug repurposing.
We formulate this task as a link prediction problem where both compounds and diseases correspond to entities in a knowledge graph.
We propose a new method, PoLo, that combines policy-guided walks based on reinforcement learning with logical rules.
arXiv Detail & Related papers (2021-03-18T16:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.