論文の概要: Research on Effectiveness Evaluation and Optimization of Baseball Teaching Method Based on Machine Learning
- arxiv url: http://arxiv.org/abs/2411.15721v1
- Date: Sun, 24 Nov 2024 05:34:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:42.941151
- Title: Research on Effectiveness Evaluation and Optimization of Baseball Teaching Method Based on Machine Learning
- Title(参考訳): 機械学習に基づく野球指導法の有効性評価と最適化に関する研究
- Authors: Shaoxuan Sun, Jingao Yuan, Yuelin Yang,
- Abstract要約: 本研究では,様々な機械学習モデルを用いて,野球トレーニングにおける学生の総合的な得点の回帰と予測を行う。
その結果, K-Neighbors Regressor と Gradient Boosting Regressor は総合的な予測精度と安定性に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In modern physical education, data-driven evaluation methods have gradually attracted attention, especially the quantitative prediction of students' sports performance through machine learning model. The purpose of this study is to use a variety of machine learning models to regress and predict students' comprehensive scores in baseball training, so as to evaluate the effectiveness of the current baseball teaching methods and put forward targeted training optimization suggestions. We set up a model and evaluate the performance of students by collecting many characteristics, such as hitting times, running times and batting. The experimental results show that K-Neighbors Regressor and Gradient Boosting Regressor are excellent in comprehensive prediction accuracy and stability, and the R score and error index are significantly better than other models. In addition, through the analysis of feature importance, it is found that cumulative hits and cumulative runs are the key factors affecting students' comprehensive scores. Based on the results of this study, this paper puts forward some suggestions on optimizing training strategies to help students get better performance in baseball training. The results show that the data-driven teaching evaluation method can effectively support physical education and promote personalized and refined teaching plan design.
- Abstract(参考訳): 現代の体育教育では、データ駆動評価手法が徐々に注目され、特に機械学習モデルによる学生のスポーツパフォーマンスの定量的予測が注目されている。
本研究の目的は,様々な機械学習モデルを用いて,野球トレーニングにおける学生の総合的な得点の回帰と予測を行い,現在の野球指導方法の有効性を評価し,対象とする学習最適化の提案を前進させることである。
我々は,打球時間,ランニング時間,打球など,多くの特徴を収集し,学生のパフォーマンスを評価するモデルを構築した。
実験の結果, K-Neighbors Regressor と Gradient Boosting Regressor は総合的な予測精度と安定性に優れており,R スコアと誤差指数は他のモデルよりもかなり優れていることがわかった。
また,特徴重要度の分析から,累積ヒットと累積ランニングが学生の総合得点に影響を及ぼす重要な要因であることが判明した。
本研究は,野球のトレーニングにおける成績向上を支援するためのトレーニング戦略の最適化について提案するものである。
その結果、データ駆動型教育評価手法は、身体教育を効果的に支援し、パーソナライズされ洗練された教育計画設計を促進することができることがわかった。
関連論文リスト
- Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction [11.564820268803619]
学生のパフォーマンス予測は、教育データマイニングにおいて最も重要な課題の1つである。
広範な予測実験にもかかわらず、機械学習手法は実践的な教育戦略に効果的に統合されていない。
本研究は,機械学習による学生の成績予測とタインド・インストラクションを統合し,対象科目における学生の成績向上を目的とした。
論文 参考訳(メタデータ) (2025-02-05T13:13:25Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
本研究では,大規模言語モデル(LLM)が数学教育における自動フィードバックを促進する可能性を探究することを目的とする。
我々は,Llamaの数学版であるMistralを採用し,このモデルを用いて,中学校数学問題に対する生徒の回答と教師によるフィードバックのデータセットを活用することによって,学生の反応を評価する。
2人の教師の判断を生かして,評価精度とフィードバックの質を評価する。
論文 参考訳(メタデータ) (2024-10-29T16:57:45Z) - Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning [8.556825982336807]
本研究では,Long Short-Term Memory Network(LSTM)に基づく機械学習モデルを用いて,教育用ビッグデータの詳細な分析を行った。
LSTMモデルは時系列データを効率的に処理し、学生の学習活動における時間依存的・長期的傾向を捉えることができる。
このアプローチは、生徒の進歩、エンゲージメント、その他の行動パターンを分析してパーソナライズされた教育を支援するのに特に有用である。
論文 参考訳(メタデータ) (2024-06-25T01:19:22Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Machine Learning Approach for Predicting Students Academic Performance
and Study Strategies based on their Motivation [0.0]
本研究は,学生の学業成績と学習戦略予測のための機械学習モデルの開発を目的とする。
モデル構築には,学生の学習過程に不可欠な重要な学習属性(内在的,外在的,自律的,関連性,能力,自尊心)が用いられた。
論文 参考訳(メタデータ) (2022-10-15T04:09:05Z) - Graph-based Ensemble Machine Learning for Student Performance Prediction [0.7874708385247353]
本研究では,単一の機械学習手法の安定性を向上させるために,グラフベースのアンサンブル機械学習手法を提案する。
私たちのモデルは、予測精度が最大14.8%向上する従来の機械学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-12-15T05:19:46Z) - Efficient Estimation of Influence of a Training Instance [56.29080605123304]
本稿では,ニューラルネットワークモデルに対するトレーニングインスタンスの影響を効率的に推定する手法を提案する。
このメソッドは、サブネットワークをゼロマスクし、サブネットワークが各トレーニングインスタンスを学習するのを防ぎます。
提案手法は, 学習の影響を捉え, 誤り予測の解釈性を高め, 一般化改善のための訓練データセットをクリーン化できることを実証する。
論文 参考訳(メタデータ) (2020-12-08T04:31:38Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
本稿では,教師モデルに内部状態を提供する改良型データ再重み付けアルゴリズムを提案する。
クリーン/ノイズラベルとニューラルマシン翻訳を用いた画像分類実験は、我々のアルゴリズムが従来の手法よりも大幅に改善されていることを実証的に実証した。
論文 参考訳(メタデータ) (2020-07-09T09:06:31Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
訓練者の表情からエージェント学習の可能性について,評価フィードバックとして解釈することで検討した。
設計したCNN-RNNモデルを用いて,学習者に対して表情とコンペティションの使用を指示することで,肯定的および否定的なフィードバックを推定する精度を向上させることができることを示す。
シミュレーション実験の結果,表情に基づく予測フィードバックのみから学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-23T17:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。