論文の概要: Towards Understanding the Influence of Reward Margin on Preference Model Performance
- arxiv url: http://arxiv.org/abs/2404.04932v1
- Date: Sun, 7 Apr 2024 12:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 18:51:34.452102
- Title: Towards Understanding the Influence of Reward Margin on Preference Model Performance
- Title(参考訳): 選好モデルの性能に及ぼすリワード・マージンの影響の理解に向けて
- Authors: Bowen Qin, Duanyu Feng, Xi Yang,
- Abstract要約: 本研究では,人間のアノテータからの詳細なラベルを必要とせず,好みの違いを推定する新しい手法を提案する。
実験の結果,トレーニングプロセスにマージン値を組み込むことで,報酬モデルの有効性が著しく向上することを示す実証的証拠が得られた。
- 参考スコア(独自算出の注目度): 8.891183078634786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is a widely used framework for the training of language models. However, the process of using RLHF to develop a language model that is well-aligned presents challenges, especially when it comes to optimizing the reward model. Our research has found that existing reward models, when trained using the traditional ranking objective based on human preference data, often struggle to effectively distinguish between responses that are more or less favorable in real-world scenarios. To bridge this gap, our study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators. Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models. This comparative analysis not only demonstrates the superiority of our approach in terms of reward prediction accuracy but also highlights its effectiveness in practical applications.
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF)は、言語モデルのトレーニングに広く使われているフレームワークである。
しかし、RLHFを用いて言語モデルを適切に整合させて開発するプロセスは、特に報酬モデルを最適化する際の課題を提起する。
我々の研究によると、既存の報酬モデルでは、人間の嗜好データに基づいて従来のランク付け目標を用いて訓練すると、現実のシナリオで好ましくない反応を効果的に区別するのに苦労することが多い。
このギャップを埋めるために,人間のアノテータからの詳細なラベルを必要とせず,好みの違いを推定する方法を提案する。
実験の結果,トレーニングプロセスにマージン値を組み込むことで,報酬モデルの有効性が著しく向上することを示す実証的証拠が得られた。
この比較分析は、報奨予測精度の観点から、我々のアプローチの優位性を実証するだけでなく、実用的応用におけるその有効性も強調する。
関連論文リスト
- Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs [25.011675414622392]
人間の嗜好データに基づいてトレーニングされたリワードモデルは、大規模言語モデルと人間の意図を一致させるのに有効であることが証明されている。
しかし、現在の報酬モデルの無意味なプロンプトや応答に対する一般化能力は限られている。
本研究は,隠れ状態の正規化による分布シフトに対する報酬モデルの一般化能力を向上するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:49:59Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
Reinforcement Learning from Human Feedback (RLHF)のような最先端技術は、しばしば2つの段階から構成される。
1)教師付き微調整(SFT)では,人間の実演データからモデルを微調整する。
2)選好学習では,選好データを用いて報奨モデルを学習し,そのモデルを微調整する強化学習ステップで活用する。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - West-of-N: Synthetic Preference Generation for Improved Reward Modeling [20.897381726408838]
合成選好データを生成することによって報酬モデルの品質を向上させる新しい手法を提案する。
提案手法は,同量の人選好データの追加に匹敵する効果で,報酬モデルの性能向上を図っている。
論文 参考訳(メタデータ) (2024-01-22T16:24:43Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - The History and Risks of Reinforcement Learning and Human Feedback [0.16843915833103415]
人間からのフィードバックからの強化学習(RLHF)は、大規模言語モデルをより使いやすく、より効果的にするための強力なテクニックとして登場した。
RLHFプロセスの中核は、最適化のための報酬関数として機能する人間の好みのモデルのトレーニングと利用である。
RLHF報酬モデルはしばしばパフォーマンスの達成の中心として言及されるが、能力、評価、トレーニング方法、オープンソースのモデルに関する記述はごくわずかである。
論文 参考訳(メタデータ) (2023-10-20T15:45:16Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。