Research on Effectiveness Evaluation and Optimization of Baseball Teaching Method Based on Machine Learning
- URL: http://arxiv.org/abs/2411.15721v1
- Date: Sun, 24 Nov 2024 05:34:09 GMT
- Title: Research on Effectiveness Evaluation and Optimization of Baseball Teaching Method Based on Machine Learning
- Authors: Shaoxuan Sun, Jingao Yuan, Yuelin Yang,
- Abstract summary: This study uses a variety of machine learning models to regress and predict students' comprehensive scores in baseball training.
The experimental results show that K-Neighbors Regressor and Gradient Boosting Regressor are excellent in comprehensive prediction accuracy and stability.
- Score: 0.0
- License:
- Abstract: In modern physical education, data-driven evaluation methods have gradually attracted attention, especially the quantitative prediction of students' sports performance through machine learning model. The purpose of this study is to use a variety of machine learning models to regress and predict students' comprehensive scores in baseball training, so as to evaluate the effectiveness of the current baseball teaching methods and put forward targeted training optimization suggestions. We set up a model and evaluate the performance of students by collecting many characteristics, such as hitting times, running times and batting. The experimental results show that K-Neighbors Regressor and Gradient Boosting Regressor are excellent in comprehensive prediction accuracy and stability, and the R score and error index are significantly better than other models. In addition, through the analysis of feature importance, it is found that cumulative hits and cumulative runs are the key factors affecting students' comprehensive scores. Based on the results of this study, this paper puts forward some suggestions on optimizing training strategies to help students get better performance in baseball training. The results show that the data-driven teaching evaluation method can effectively support physical education and promote personalized and refined teaching plan design.
Related papers
- Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction [11.564820268803619]
Student performance prediction is one of the most important subjects in educational data mining.
Despite extensive prediction experiments, machine learning methods have not been effectively integrated into practical teaching strategies.
This study integrates the results of machine learning-based student performance prediction with tiered instruction, aiming to enhance student outcomes in target course.
arXiv Detail & Related papers (2025-02-05T13:13:25Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
This study aims to explore the potential of Large Language Models (LLMs) in facilitating automated feedback in math education.
We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems.
We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers.
arXiv Detail & Related papers (2024-10-29T16:57:45Z) - Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning [8.556825982336807]
In this work, a machine learning model based on Long Short-Term Memory Network (LSTM) was used to conduct an in-depth analysis of educational big data.
The LSTM model efficiently processes time series data, allowing us to capture time-dependent and long-term trends in students' learning activities.
This approach is particularly useful for analyzing student progress, engagement, and other behavioral patterns to support personalized education.
arXiv Detail & Related papers (2024-06-25T01:19:22Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Machine Learning Approach for Predicting Students Academic Performance
and Study Strategies based on their Motivation [0.0]
This research aims to develop machine learning models for students academic performance and study strategies prediction.
Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) essential for students learning process were used in building the models.
arXiv Detail & Related papers (2022-10-15T04:09:05Z) - Graph-based Ensemble Machine Learning for Student Performance Prediction [0.7874708385247353]
We propose a graph-based ensemble machine learning method to improve the stability of single machine learning methods.
Our model outperforms the best traditional machine learning algorithms by up to 14.8% in prediction accuracy.
arXiv Detail & Related papers (2021-12-15T05:19:46Z) - Efficient Estimation of Influence of a Training Instance [56.29080605123304]
We propose an efficient method for estimating the influence of a training instance on a neural network model.
Our method is inspired by dropout, which zero-masks a sub-network and prevents the sub-network from learning each training instance.
We demonstrate that the proposed method can capture training influences, enhance the interpretability of error predictions, and cleanse the training dataset for improving generalization.
arXiv Detail & Related papers (2020-12-08T04:31:38Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
We propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model.
Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.
arXiv Detail & Related papers (2020-07-09T09:06:31Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
We investigate the potential of agent learning from trainers' facial expressions via interpreting them as evaluative feedback.
With designed CNN-RNN model, our analysis shows that telling trainers to use facial expressions and competition can improve the accuracies for estimating positive and negative feedback.
Our results with a simulation experiment show that learning solely from predicted feedback based on facial expressions is possible.
arXiv Detail & Related papers (2020-01-23T17:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.