FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
- URL: http://arxiv.org/abs/2411.15811v1
- Date: Sun, 24 Nov 2024 12:34:02 GMT
- Title: FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
- Authors: Pan Liao, Feng Yang, Di Wu, Jinwen Yu, Wenhui Zhao, Bo Liu,
- Abstract summary: Transformer-based multi-object tracking (MOT) models often suffer from slow inference speeds due to their structure or other issues.
This paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr.
Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures.
- Score: 8.276525794285025
- License:
- Abstract: Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
Related papers
- HSTrack: Bootstrap End-to-End Multi-Camera 3D Multi-object Tracking with Hybrid Supervision [34.7347336548199]
In camera-based 3D multi-object tracking (MOT), the prevailing methods follow the tracking-by-query-propagation paradigm.
We present HSTrack, a novel plug-and-play method designed to co-facilitate multi-task learning for detection and tracking.
arXiv Detail & Related papers (2024-11-11T08:18:49Z) - MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
This paper introduces MCTrack, a new 3D multi-object tracking method that achieves state-of-the-art (SOTA) performance across KITTI, nuScenes, and datasets.
arXiv Detail & Related papers (2024-09-23T11:26:01Z) - ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame.
Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios.
We propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on bounding boxes.
arXiv Detail & Related papers (2024-08-28T05:53:30Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
arXiv Detail & Related papers (2024-03-15T02:39:26Z) - Contrastive Learning for Multi-Object Tracking with Transformers [79.61791059432558]
We show how DETR can be turned into a MOT model by employing an instance-level contrastive loss.
Our training scheme learns object appearances while preserving detection capabilities and with little overhead.
Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset.
arXiv Detail & Related papers (2023-11-14T10:07:52Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Sparse Message Passing Network with Feature Integration for Online
Multiple Object Tracking [6.510588721127479]
Experimental results demonstrate that a simple online MPN with these two contributions can perform better than many state-of-the-art methods.
Our association method generalizes well and can also improve the results of private detection based methods.
arXiv Detail & Related papers (2022-12-06T14:10:57Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
We propose a solution named TransMOT to efficiently model the spatial and temporal interactions among objects in a video.
TransMOT is not only more computationally efficient than the traditional Transformer, but it also achieves better tracking accuracy.
The proposed method is evaluated on multiple benchmark datasets including MOT15, MOT16, MOT17, and MOT20.
arXiv Detail & Related papers (2021-04-01T01:49:05Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.