論文の概要: Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation
- arxiv url: http://arxiv.org/abs/2411.15882v1
- Date: Sun, 24 Nov 2024 15:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:44.871704
- Title: Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation
- Title(参考訳): 放射基底関数形状表現を用いた解剖学の最適化駆動統計モデル
- Authors: Hong Xu, Shireen Y. Elhabian,
- Abstract要約: 粒子に基づく形状モデリングは、解剖学の個体群における形状変数の定量化に一般的な手法である。
本稿では,従来の最適化手法を用いて,モデルの特徴をより正確に制御する手法を提案する。
本研究では,2つの実データに対する最先端手法の有効性を実証し,損失選択を実証的に正当化する。
- 参考スコア(独自算出の注目度): 3.743399165184124
- License:
- Abstract: Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
- Abstract(参考訳): 粒子に基づく形状モデリング(PSM)は、解剖学の個体群における形状の変動を自動的に定量化するための一般的な手法である。
PSMファミリの手法は、3次元表面の高密度な粒子群(擬似ランドマークとして)を自動的にポップアップさせ、その後の形状解析を可能にする。
最近のディープラーニングアプローチでは、形状の暗黙的な放射基底関数表現を利用して、解剖学の基盤となる複雑な幾何学に適応している。
本稿では,固有形状と対応損失を両立させることで,モデルの特徴をより正確に制御できる従来の最適化手法を用いて,本手法を適応する。
さらに、提案手法はブラックボックスモデルの使用を回避し、粒子が基底表面をナビゲートする自由度を高め、より情報的な統計モデルをもたらす。
本研究では,2つの実データに対する最先端手法の有効性を実証し,損失選択を実証的に正当化する。
関連論文リスト
- Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Particle-Based Shape Modeling for Arbitrary Regions-of-Interest [3.743399165184124]
本稿では, 任意の領域に形状モデリングを適用できるように, 広く使われているSSMフレームワークであるPSMの拡張を提案する。
これらの欠点に対処するために、メッシュフィールドを使用して自由形式の制約を定義し、任意の領域の関心を形状面に分割することができる。
本手法の有効性を,難易度の高い合成データセットと2つの医用データセットに示す。
論文 参考訳(メタデータ) (2023-12-29T20:24:20Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
論文 参考訳(メタデータ) (2023-08-10T06:40:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
類似しているが異なる領域における血流シミュレーションの効率的な予測法として,データ駆動サロゲートモデルを提案する。
幾何パラメータに対する非侵入的還元次数モデルが適切な分解を用いて構築される。
ラジアル基底関数補間器は、縮小順序モデルの縮小係数を予測するために訓練される。
論文 参考訳(メタデータ) (2023-02-21T21:18:17Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
本稿では,ガウス過程の定式化に基づく形状適合/登録手法を提案する。
様々な変換を持つ2次元の小さなデータセットと耳の3次元データセットの両方で実験が行われる。
論文 参考訳(メタデータ) (2022-03-26T16:48:27Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Functional additive regression on shape and form manifolds of planar
curves [0.0]
我々は、形と形を、翻訳、回転、および -- 形状について -- の同値類として定義する。
平面曲線やランドマークの形状や形状のモデルに一般化された加法的回帰を拡張します。
論文 参考訳(メタデータ) (2021-09-06T17:43:32Z) - Dynamic multi-object Gaussian process models: A framework for
data-driven functional modelling of human joints [0.0]
形状とポーズを結合する原則的かつ堅牢な方法が,3つの主要な問題によって明らかになってきた。
本研究では,人体関節解析のための動的多目的統計モデリングフレームワークを提案する。
このフレームワークは、生物学的関節のための効率的な生成動的マルチオブジェクトモデリングプラットフォームを提供する。
論文 参考訳(メタデータ) (2020-01-22T07:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。