論文の概要: Selective Inference for Time-Varying Effect Moderation
- arxiv url: http://arxiv.org/abs/2411.15908v1
- Date: Sun, 24 Nov 2024 16:37:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:21.158512
- Title: Selective Inference for Time-Varying Effect Moderation
- Title(参考訳): 時間変化効果変調のための選択推論
- Authors: Soham Bakshi, Walter Dempsey, Snigdha Panigrahi,
- Abstract要約: 因果効果のモデレーションは、個人が観察した特性に基づいて、結果変数に対する介入(または治療)の効果がどのように変化するかを調べる。
高次元解析は、しばしば解釈可能性に欠け、重要なモデレーターはノイズに隠れている。
時間変化による因果効果のモデレーションを選択的に推定する2段階の手法を提案する。
- 参考スコア(独自算出の注目度): 3.8233569758620063
- License:
- Abstract: Causal effect moderation investigates how the effect of interventions (or treatments) on outcome variables changes based on observed characteristics of individuals, known as potential effect moderators. With advances in data collection, datasets containing many observed features as potential moderators have become increasingly common. High-dimensional analyses often lack interpretability, with important moderators masked by noise, while low-dimensional, marginal analyses yield many false positives due to strong correlations with true moderators. In this paper, we propose a two-step method for selective inference on time-varying causal effect moderation that addresses the limitations of both high-dimensional and marginal analyses. Our method first selects a relatively smaller, more interpretable model to estimate a linear causal effect moderation using a Gaussian randomization approach. We then condition on the selection event to construct a pivot, enabling uniformly asymptotic semi-parametric inference in the selected model. Through simulations and real data analyses, we show that our method consistently achieves valid coverage rates, even when existing conditional methods and common sample splitting techniques fail. Moreover, our method yields shorter, bounded intervals, unlike existing methods that may produce infinitely long intervals.
- Abstract(参考訳): 因果効果のモデレーションは、潜在的効果のモデレーターとして知られる個人の観察された特性に基づいて、結果変数に対する介入(または治療)の効果がどのように変化するかを調べる。
データ収集の進歩に伴い、潜在的なモデレーターとして多くの観測された特徴を含むデータセットがますます一般的になっている。
高次元解析は、しばしば解釈可能性に欠けるが、重要なモデレーターはノイズに隠れており、低次元の境界解析は真のモデレーターとの強い相関により多くの偽陽性をもたらす。
本稿では,高次元解析と限界解析の両方の限界に対処する時間変化因果効果のモデレーションを選択的に推定する2段階の手法を提案する。
提案手法はまず比較的小さく解釈可能なモデルを選択し,ガウス確率化手法を用いて線形因果効果のモデレーションを推定する。
次に、選択事象を条件としてピボットを構築し、選択されたモデルにおける一様漸近半パラメトリック推論を可能にする。
シミュレーションと実データ解析により,既存の条件付き手法やサンプル分割手法が失敗した場合でも,本手法が常に有効なカバレッジ率を達成することを示す。
さらに,本手法は,無限に長い区間を生成できる既存手法とは異なり,短い有界区間を生成する。
関連論文リスト
- Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models [0.8274836883472768]
実験によって得られた時間離散軌道データから,動作パターンを理解し,予測するために推論手法が必要である。
非線形二階ランゲヴィンモデルの確率を近似する新しい手法を提案する。
これにより、アクティブに駆動されたエンティティのための動的モデルの体系的、データ駆動推論の道を開いた。
論文 参考訳(メタデータ) (2024-11-13T15:27:02Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Valid causal inference with unobserved confounding in high-dimensional
settings [0.0]
半パラメトリックな推論が、観測されていない共同創設者や高次元ニュアンスモデルの存在下でどのように得られるかを示す。
本研究では、観測不能な共振を許容する不確実区間を提案し、観測不能な共振の量が小さい場合、その結果の推論が有効であることを示す。
論文 参考訳(メタデータ) (2024-01-12T13:21:20Z) - Inference in conditioned dynamics through causality restoration [0.0]
条件付き分布から独立したサンプルを生成する方法を提案する。
この方法は一般化された力学モデルのパラメータを学習する。
本手法の重要な応用、すなわち(不完全な)臨床検査による伝染病リスク評価の問題について論じる。
論文 参考訳(メタデータ) (2022-10-18T21:58:58Z) - Partial Identification of Treatment Effects with Implicit Generative
Models [20.711877803169134]
暗黙的生成モデルを用いた一般的な因果グラフにおける平均治療効果(ATE)の部分的同定法を提案する。
線形構造因果モデルにおいて,我々のアルゴリズムは ATE 上の厳密な境界に収束することを示す。
論文 参考訳(メタデータ) (2022-10-14T22:18:00Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。