Selective Inference for Time-Varying Effect Moderation
- URL: http://arxiv.org/abs/2411.15908v1
- Date: Sun, 24 Nov 2024 16:37:48 GMT
- Title: Selective Inference for Time-Varying Effect Moderation
- Authors: Soham Bakshi, Walter Dempsey, Snigdha Panigrahi,
- Abstract summary: Causal effect moderation investigates how the effect of interventions (or treatments) on outcome variables changes based on observed characteristics of individuals.
High-dimensional analyses often lack interpretability, with important moderators masked by noise.
We propose a two-step method for selective inference on time-varying causal effect moderation.
- Score: 3.8233569758620063
- License:
- Abstract: Causal effect moderation investigates how the effect of interventions (or treatments) on outcome variables changes based on observed characteristics of individuals, known as potential effect moderators. With advances in data collection, datasets containing many observed features as potential moderators have become increasingly common. High-dimensional analyses often lack interpretability, with important moderators masked by noise, while low-dimensional, marginal analyses yield many false positives due to strong correlations with true moderators. In this paper, we propose a two-step method for selective inference on time-varying causal effect moderation that addresses the limitations of both high-dimensional and marginal analyses. Our method first selects a relatively smaller, more interpretable model to estimate a linear causal effect moderation using a Gaussian randomization approach. We then condition on the selection event to construct a pivot, enabling uniformly asymptotic semi-parametric inference in the selected model. Through simulations and real data analyses, we show that our method consistently achieves valid coverage rates, even when existing conditional methods and common sample splitting techniques fail. Moreover, our method yields shorter, bounded intervals, unlike existing methods that may produce infinitely long intervals.
Related papers
- Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models [0.8274836883472768]
Inference methods are required to understand and predict the motion patterns from time discrete trajectory data provided by experiments.
We propose a new method to approximate the likelihood for non-linear second order Langevin models.
We thereby pave the way for the systematic, data-driven inference of dynamical models for actively driven entities.
arXiv Detail & Related papers (2024-11-13T15:27:02Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Valid causal inference with unobserved confounding in high-dimensional
settings [0.0]
We show how valid semiparametric inference can be obtained in the presence of unobserved confounders and high-dimensional nuisance models.
We propose uncertainty intervals which allow for unobserved confounding, and show that the resulting inference is valid when the amount of unobserved confounding is small.
arXiv Detail & Related papers (2024-01-12T13:21:20Z) - Inference in conditioned dynamics through causality restoration [0.0]
We propose an alternative method to produce independent samples from a conditioned distribution.
The method learns the parameters of a generalized dynamical model.
We discuss an important application of the method, namely the problem of epidemic risk assessment from (imperfect) clinical tests.
arXiv Detail & Related papers (2022-10-18T21:58:58Z) - Partial Identification of Treatment Effects with Implicit Generative
Models [20.711877803169134]
We propose a new method for partial identification of average treatment effects(ATEs) in general causal graphs using implicit generative models.
We prove that our algorithm converges to tight bounds on ATE in linear structural causal models.
arXiv Detail & Related papers (2022-10-14T22:18:00Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - The Variational Method of Moments [65.91730154730905]
conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables.
Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem.
We provide algorithms for valid statistical inference based on the same kind of variational reformulations.
arXiv Detail & Related papers (2020-12-17T07:21:06Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.