Cross-organ Deployment of EOS Detection AI without Retraining: Feasibility and Limitation
- URL: http://arxiv.org/abs/2411.15942v1
- Date: Sun, 24 Nov 2024 18:01:13 GMT
- Title: Cross-organ Deployment of EOS Detection AI without Retraining: Feasibility and Limitation
- Authors: Yifei Wu, Juming Xiong, Tianyuan Yao, Ruining Deng, Junlin Guo, Jialin Yue, Naweed Chowdhury, Yuankai Huo,
- Abstract summary: Chronic rhinosinusitis (CRS) is characterized by persistent inflammation in the paranasal sinuses.
Eos, a crucial component in the mucosal immune response, have been linked to disease severity in CRS.
The diagnosis of eosinophilic CRS typically uses a threshold of 10-20 eos per high-power field (HPF)
- Score: 6.200516824977507
- License:
- Abstract: Chronic rhinosinusitis (CRS) is characterized by persistent inflammation in the paranasal sinuses, leading to typical symptoms of nasal congestion, facial pressure, olfactory dysfunction, and discolored nasal drainage, which can significantly impact quality-of-life. Eosinophils (Eos), a crucial component in the mucosal immune response, have been linked to disease severity in CRS. The diagnosis of eosinophilic CRS typically uses a threshold of 10-20 eos per high-power field (HPF). However, manually counting Eos in histological samples is laborious and time-intensive, making the use of AI-driven methods for automated evaluations highly desirable. Interestingly, eosinophils are predominantly located in the gastrointestinal (GI) tract, which has prompted the release of numerous deep learning models trained on GI data. This study leverages a CircleSnake model initially trained on upper-GI data to segment Eos cells in whole slide images (WSIs) of nasal tissues. It aims to determine the extent to which Eos segmentation models developed for the GI tract can be adapted to nasal applications without retraining. The experimental results show promising accuracy in some WSIs, although, unsurprisingly, the performance varies across cases. This paper details these performance outcomes, delves into the reasons for such variations, and aims to provide insights that could guide future development of deep learning models for eosinophilic CRS.
Related papers
- Expanding Training Data for Endoscopic Phenotyping of Eosinophilic Esophagitis [9.044271577557721]
Eosinophilic esophagitis (EoE) is a chronic esophageal disorder marked by eosinophil-dominated inflammation.
Recent advances have seen AI-assisted endoscopic imaging, guided by the EREFS system, emerge as a potential alternative to reduce reliance on invasive histologic assessments.
This study seeks to improve the performance of deep learning-based EoE phenotype classification by augmenting our training data with a diverse set of images from online platforms, public datasets, and electronic textbooks.
arXiv Detail & Related papers (2025-02-06T16:38:47Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - A Nasal Cytology Dataset for Object Detection and Deep Learning [0.0]
We present the first dataset of rhino-cytological field images: the NCD (Nasal Cytology dataset)
The real distribution of the cytotypes, populating the nasal mucosa has been replicated, sampling images from slides of clinical patients, and manually annotating each cell found on them.
This work contributes to some of open challenges by presenting a novel machine learning-based approach to aid the automated detection and classification of nasal mucosa cells.
arXiv Detail & Related papers (2024-04-21T19:02:38Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Eosinophils Instance Object Segmentation on Whole Slide Imaging Using
Multi-label Circle Representation [6.263438295365185]
Eosinophilic esophagitis (EoE) is a chronic and relapsing disease characterized by esophageal inflammation.
The diagnosis of EoE is typically performed with a threshold (15 to 20) of eosinophils per high-power field (HPF)
arXiv Detail & Related papers (2023-08-17T13:27:01Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Machine learning approach for biopsy-based identification of
eosinophilic esophagitis reveals importance of global features [0.0]
Eosinophilic esophagitis (EoE) is an allergic inflammatory condition characterized by eosinophil accumulation in the esophageal mucosa.
One of the main challenges in automating this process is detecting features that are small relative to the size of the biopsy.
We developed a platform based on a deep convolutional neural network (DCNN) that can classify esophageal biopsies with an accuracy of 85%.
arXiv Detail & Related papers (2021-01-13T10:38:46Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Spitzoid Lesions Diagnosis based on GA feature selection and Random
Forest [0.0]
This study aims to develop an artificial intelligence model to support the diagnosis of Spitzoid lesions.
A private spitzoid lesions dataset have been used to evaluate the system proposed in this study.
Results obtained with our SMOTE-GA-RF model with GA-based 16 features show a great performance with accuracy 0.97, F-measure 0.98, AUC 0.98, and G-mean 0.97.
arXiv Detail & Related papers (2020-03-10T14:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.