A Nasal Cytology Dataset for Object Detection and Deep Learning
- URL: http://arxiv.org/abs/2404.13745v1
- Date: Sun, 21 Apr 2024 19:02:38 GMT
- Title: A Nasal Cytology Dataset for Object Detection and Deep Learning
- Authors: Mauro Camporeale, Giovanni Dimauro, Matteo Gelardi, Giorgia Iacobellis, Mattia Sebastiano Ladisa, Sergio Latrofa, Nunzia Lomonte,
- Abstract summary: We present the first dataset of rhino-cytological field images: the NCD (Nasal Cytology dataset)
The real distribution of the cytotypes, populating the nasal mucosa has been replicated, sampling images from slides of clinical patients, and manually annotating each cell found on them.
This work contributes to some of open challenges by presenting a novel machine learning-based approach to aid the automated detection and classification of nasal mucosa cells.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Nasal Cytology is a new and efficient clinical technique to diagnose rhinitis and allergies that is not much widespread due to the time-consuming nature of cell counting; that is why AI-aided counting could be a turning point for the diffusion of this technique. In this article we present the first dataset of rhino-cytological field images: the NCD (Nasal Cytology Dataset), aimed to train and deploy Object Detection models to support physicians and biologists during clinical practice. The real distribution of the cytotypes, populating the nasal mucosa has been replicated, sampling images from slides of clinical patients, and manually annotating each cell found on them. The correspondent object detection task presents non'trivial issues associated with the strong class imbalancement, involving the rarest cell types. This work contributes to some of open challenges by presenting a novel machine learning-based approach to aid the automated detection and classification of nasal mucosa cells: the DETR and YOLO models shown good performance in detecting cells and classifying them correctly, revealing great potential to accelerate the work of rhinology experts.
Related papers
- HistoSmith: Single-Stage Histology Image-Label Generation via Conditional Latent Diffusion for Enhanced Cell Segmentation and Classification [0.19791587637442667]
This study introduces a novel single-stage approach for generating image-label pairs to augment histology datasets.
Unlike state-of-the-art methods that utilize diffusion models with separate components for label and image generation, our approach employs a latent diffusion model.
This model enables tailored data generation by conditioning on user-defined parameters such as cell types, quantities, and tissue types.
arXiv Detail & Related papers (2025-02-12T19:51:41Z) - ActiveSSF: An Active-Learning-Guided Self-Supervised Framework for Long-Tailed Megakaryocyte Classification [3.6535793744942318]
We propose the ActiveSSF framework, which integrates active learning with self-supervised pretraining.
Experimental results on clinical megakaryocyte datasets demonstrate that ActiveSSF achieves state-of-the-art performance.
To foster further research, the code and datasets will be publicly released in the future.
arXiv Detail & Related papers (2025-02-12T08:24:36Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
We propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease.
Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%.
arXiv Detail & Related papers (2024-12-23T20:42:15Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - VOLTA: an Environment-Aware Contrastive Cell Representation Learning for
Histopathology [0.3436781233454516]
We propose a self-supervised framework (VOLTA) for cell representation learning in histopathology images.
We subjected our model to extensive experiments on the data collected from multiple institutions around the world.
To showcase the potential power of our proposed framework, we applied VOLTA to ovarian and endometrial cancers with very small sample sizes.
arXiv Detail & Related papers (2023-03-08T16:35:47Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.