Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
- URL: http://arxiv.org/abs/2411.15944v1
- Date: Sun, 24 Nov 2024 18:14:44 GMT
- Title: Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
- Authors: Xinzhe Cao, Yadong Xu, Xiaofeng Yang,
- Abstract summary: We propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework.
We benchmarked the proposed method using data from one of the most downloaded mobile games in the world.
Our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models.
- Score: 3.187236205541292
- License:
- Abstract: Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
Related papers
- Uncertainty-Guided Enhancement on Driving Perception System via Foundation Models [37.35848849961951]
We develop a method that leverages foundation models to refine predictions from existing driving perception models.
The method demonstrates a 10 to 15 percent improvement in prediction accuracy and reduces the number of queries to the foundation model by 50 percent.
arXiv Detail & Related papers (2024-10-02T00:46:19Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Unleash the Power of Context: Enhancing Large-Scale Recommender Systems
with Context-Based Prediction Models [2.3267858167388775]
A Context-Based Prediction Model determines the probability of a user's action solely by relying on user and contextual features.
We have identified numerous valuable applications for this modeling approach, including training an auxiliary context-based model to estimate click probability.
arXiv Detail & Related papers (2023-07-25T07:57:12Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Predicting Out-of-Distribution Error with Confidence Optimal Transport [17.564313038169434]
We present a simple yet effective method to predict a model's performance on an unknown distribution without any addition annotation.
We show that our method, Confidence Optimal Transport (COT), provides robust estimates of a model's performance on a target domain.
Despite its simplicity, our method achieves state-of-the-art results on three benchmark datasets and outperforms existing methods by a large margin.
arXiv Detail & Related papers (2023-02-10T02:27:13Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.