論文の概要: Gaussian Scenes: Pose-Free Sparse-View Scene Reconstruction using Depth-Enhanced Diffusion Priors
- arxiv url: http://arxiv.org/abs/2411.15966v1
- Date: Sun, 24 Nov 2024 19:34:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:43.176327
- Title: Gaussian Scenes: Pose-Free Sparse-View Scene Reconstruction using Depth-Enhanced Diffusion Priors
- Title(参考訳): ガウスのシーン:深部拡散前駆体を用いた無球面スパースビューのシーン再構成
- Authors: Soumava Paul, Prakhar Kaushik, Alan Yuille,
- Abstract要約: 限られた数の2D画像から360ドル(約3,600円)のポーズのないシーンを再現するための生成的アプローチを提案する。
本稿では,3次元シーンの描画や深度マップに欠落した細部を描画し,アーティファクトを除去するインストラクション追従RGBD拡散モデルを提案する。
- 参考スコア(独自算出の注目度): 5.407319151576265
- License:
- Abstract: In this work, we introduce a generative approach for pose-free reconstruction of $360^{\circ}$ scenes from a limited number of uncalibrated 2D images. Pose-free scene reconstruction from incomplete, unposed observations is usually regularized with depth estimation or 3D foundational priors. While recent advances have enabled sparse-view reconstruction of unbounded scenes with known camera poses using diffusion priors, these methods rely on explicit camera embeddings for extrapolating unobserved regions. This reliance limits their application in pose-free settings, where view-specific data is only implicitly available. To address this, we propose an instruction-following RGBD diffusion model designed to inpaint missing details and remove artifacts in novel view renders and depth maps of a 3D scene. We also propose a novel confidence measure for Gaussian representations to allow for better detection of these artifacts. By progressively integrating these novel views in a Gaussian-SLAM-inspired process, we achieve a multi-view-consistent Gaussian representation. Evaluations on the MipNeRF360 dataset demonstrate that our method surpasses existing pose-free techniques and performs competitively with state-of-the-art posed reconstruction methods in complex $360^{\circ}$ scenes.
- Abstract(参考訳): 本研究では,少数の未校正2次元画像から360^{\circ}$のポーズのないシーンを再現するための生成的アプローチを提案する。
不完全で未定の観測結果からの無作為なシーン再構成は、通常、深さ推定や3Dの基礎的な先行とともに正規化される。
近年の進歩により、拡散先行画像を用いた未知のシーンのスパースビュー再構築が可能となったが、これらの手法は、観測されていない領域を外挿するための明示的なカメラ埋め込みに依存している。
この依存は、ビュー固有のデータが暗黙的にのみ利用可能な、ポーズのない設定でアプリケーションを制限します。
そこで本研究では,未知の詳細を描き出し,新しいビューレンダリングや3Dシーンの深度マップのアーティファクトを除去するために,指示追従RGBD拡散モデルを提案する。
また,これらのアーティファクトのより優れた検出を可能にするため,ガウス表現に対する新たな信頼度尺度を提案する。
これらの新しいビューをガウス-SLAMに着想を得たプロセスに徐々に統合することにより、多視点のガウス表現を実現する。
MipNeRF360データセットの評価は,提案手法が既存のポーズフリー手法を超越し,複雑な360^{\circ}$シーンにおける最先端の復元手法と競合することを示す。
関連論文リスト
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - SCube: Instant Large-Scale Scene Reconstruction using VoxSplats [55.383993296042526]
SCubeは画像の粗い集合から大規模3次元シーン(幾何学、外観、意味論)を再構成する新しい手法である。
提案手法は,高解像度のスパース・ボクセル・足場上に支持された3次元ガウスの組である,新しい表現VoxSplatを用いて再構成シーンを符号化する。
論文 参考訳(メタデータ) (2024-10-26T00:52:46Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
スパースビューの再構築は本質的に不適切であり、制約を受けていない。
本稿では,限られた画像から高品質な再構成を生成できるLM-Gaussianを紹介する。
提案手法は,従来の3DGS法と比較してデータ取得要求を大幅に削減する。
論文 参考訳(メタデータ) (2024-09-05T12:09:02Z) - Sp2360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors [51.36238367193988]
潜時拡散モデル(LDM)を用いた360度3次元シーンのスパースビュー再構成に挑戦する。
SparseSplat360は,未完成の細部を埋めたり,新しいビューをクリーンにするために,インペイントとアーティファクト除去のカスケードを利用する手法である。
提案手法は,9つの入力ビューから360度映像全体を生成する。
論文 参考訳(メタデータ) (2024-05-26T11:01:39Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3Dガウススプラッティング(3DGS)はシーンを正確に表現するための効率的なアプローチとして登場した。
本稿では,ノイズの多い3DGS表現とスムーズな3Dメッシュ表現とのギャップを埋めるための新しい手法を提案する。
私たちは、オリジナルのトレーニングポーズに対応するステレオアライメントされたイメージのペアをレンダリングし、ペアをステレオモデルに入力して深度プロファイルを取得し、最後にすべてのプロファイルを融合して単一のメッシュを得る。
論文 参考訳(メタデータ) (2024-04-02T10:13:18Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z) - ERF: Explicit Radiance Field Reconstruction From Scratch [12.254150867994163]
センサのポーズとキャリブレーションでシーンの一連の画像を処理し,フォトリアルなデジタルモデルを推定する,新しい高密度3次元再構成手法を提案する。
重要な革新の1つは、根底にある体積表現が完全に明示的であることである。
我々は,本手法が汎用的かつ実用的であることを示し,撮影に高度に制御された実験室の設置は必要とせず,多種多様な物体でシーンを再構築することができることを示した。
論文 参考訳(メタデータ) (2022-02-28T19:37:12Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
まず,未知のスケールまで深さを予測し,単一の単眼画像からシフトする2段階フレームワークを提案する。
そして、3dポイントクラウドエンコーダを使って深度シフトと焦点距離を予測し、リアルな3dシーンの形状を復元します。
論文 参考訳(メタデータ) (2020-12-17T02:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。