論文の概要: SCube: Instant Large-Scale Scene Reconstruction using VoxSplats
- arxiv url: http://arxiv.org/abs/2410.20030v1
- Date: Sat, 26 Oct 2024 00:52:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:51.485334
- Title: SCube: Instant Large-Scale Scene Reconstruction using VoxSplats
- Title(参考訳): SCube: VoxSplats を用いたインスタント大規模シーン再構築
- Authors: Xuanchi Ren, Yifan Lu, Hanxue Liang, Zhangjie Wu, Huan Ling, Mike Chen, Sanja Fidler, Francis Williams, Jiahui Huang,
- Abstract要約: SCubeは画像の粗い集合から大規模3次元シーン(幾何学、外観、意味論)を再構成する新しい手法である。
提案手法は,高解像度のスパース・ボクセル・足場上に支持された3次元ガウスの組である,新しい表現VoxSplatを用いて再構成シーンを符号化する。
- 参考スコア(独自算出の注目度): 55.383993296042526
- License:
- Abstract: We present SCube, a novel method for reconstructing large-scale 3D scenes (geometry, appearance, and semantics) from a sparse set of posed images. Our method encodes reconstructed scenes using a novel representation VoxSplat, which is a set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold. To reconstruct a VoxSplat from images, we employ a hierarchical voxel latent diffusion model conditioned on the input images followed by a feedforward appearance prediction model. The diffusion model generates high-resolution grids progressively in a coarse-to-fine manner, and the appearance network predicts a set of Gaussians within each voxel. From as few as 3 non-overlapping input images, SCube can generate millions of Gaussians with a 1024^3 voxel grid spanning hundreds of meters in 20 seconds. Past works tackling scene reconstruction from images either rely on per-scene optimization and fail to reconstruct the scene away from input views (thus requiring dense view coverage as input) or leverage geometric priors based on low-resolution models, which produce blurry results. In contrast, SCube leverages high-resolution sparse networks and produces sharp outputs from few views. We show the superiority of SCube compared to prior art using the Waymo self-driving dataset on 3D reconstruction and demonstrate its applications, such as LiDAR simulation and text-to-scene generation.
- Abstract(参考訳): SCubeは画像の粗い集合から大規模3次元シーン(幾何学、外観、意味論)を再構成する新しい手法である。
提案手法は,高解像度のスパース・ボクセル・足場上に支持された3次元ガウスの組である,新しい表現VoxSplatを用いて再構成シーンを符号化する。
画像からVoxSplatを再構成するために,入力画像に条件付き階層型Voxel遅延拡散モデルとフィードフォワード外観予測モデルを用いる。
拡散モデルは粗大な方法で徐々に高分解能グリッドを生成し、出現ネットワークは各ボクセル内のガウスの集合を予測する。
3つの重複しない入力画像から、SCubeは20秒で数百メートルに及ぶ1024^3のボクセル格子を持つ何百万ものガウシアンを生成することができる。
過去の作業はシーンごとの最適化に頼っているか、入力ビューからシーンを再構築できないか、低解像度モデルに基づく幾何学的事前情報を活用するか、ぼやけた結果を生み出す。
対照的に、SCubeは高解像度スパースネットワークを活用し、少数のビューから鋭い出力を生成する。
Waymoの自動運転データセットを用いた3次元再構築におけるSCubeの先行技術と比較して,SCubeの優位性を示し,LiDARシミュレーションやテキスト・ツー・シーン・ジェネレーションなどの応用を実証する。
関連論文リスト
- FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction [59.77970844874235]
スパースビュー画像から高品質な3Dガウス画像を生成することができるフィードフォワード再構築フレームワークであるFreeSplatterを提案する。
FreeSplatterは、シーケンシャルな自己アテンションブロックで構成される、合理化されたトランスフォーマーアーキテクチャ上に構築されている。
テキスト・画像・3Dコンテンツ作成など,下流アプリケーションの生産性を高めるFreeSplatterの可能性を示す。
論文 参考訳(メタデータ) (2024-12-12T18:52:53Z) - Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering [37.48219196092378]
ニューラルネットワークや3Dガウスアンを使わずにスパースボクセル上に放射化処理を組み込んだ効率的な放射場レンダリングアルゴリズムを提案する。
我々は、シーン内の様々な詳細レベルにスパースボクセルを適応的に適合させ、高いレンダリングフレームレートを達成しながら詳細を忠実に再現する。
提案手法は,4db以上のPSNRと10倍以上のFPS高速化により,従来の神経フリーなボクセルグリッド表現を改善した。
論文 参考訳(メタデータ) (2024-12-05T18:59:11Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGSは、スパースビュー画像が与えられたガウススプラッティングの拡散モデルである。
我々は3Dガウスを生成するためにトランスフォーマーネットワークを経由する新しい視点を利用する。
論文 参考訳(メタデータ) (2024-11-25T07:57:17Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
スパースビューの再構築は本質的に不適切であり、制約を受けていない。
本稿では,限られた画像から高品質な再構成を生成できるLM-Gaussianを紹介する。
提案手法は,従来の3DGS法と比較してデータ取得要求を大幅に削減する。
論文 参考訳(メタデータ) (2024-09-05T12:09:02Z) - AugGS: Self-augmented Gaussians with Structural Masks for Sparse-view 3D Reconstruction [9.953394373473621]
スパースビュー3D再構成はコンピュータビジョンにおける大きな課題である。
本研究では,スパース・ビュー3D再構成のための構造マスクを付加した自己拡張型2段ガウス・スプレイティング・フレームワークを提案する。
提案手法は,認識品質における最先端性能と,スパース入力との多視点整合性を実現する。
論文 参考訳(メタデータ) (2024-08-09T03:09:22Z) - MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
本稿では,多視点ガウス再構成器を備えた一般軽量ガウス再構成モデルMVGambaを紹介する。
オフザディテールのマルチビュー拡散モデルを統合することで、MVGambaは単一の画像、スパース画像、テキストプロンプトから3D生成タスクを統一する。
実験により、MVGambaは、すべての3Dコンテンツ生成シナリオで最先端のベースラインを約0.1タイムのモデルサイズで上回ります。
論文 参考訳(メタデータ) (2024-06-10T15:26:48Z) - FlexiDreamer: Single Image-to-3D Generation with FlexiCubes [20.871847154995688]
FlexiDreamerは、マルチビュー生成イメージから高品質なメッシュを直接再構築する新しいフレームワークである。
提案手法では,1つの画像から3次元の下流タスクにおいて,約1分で高忠実度3Dメッシュを生成することができる。
論文 参考訳(メタデータ) (2024-04-01T08:20:18Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。