論文の概要: Performance Implications of Multi-Chiplet Neural Processing Units on Autonomous Driving Perception
- arxiv url: http://arxiv.org/abs/2411.16007v1
- Date: Sun, 24 Nov 2024 22:59:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:42.232614
- Title: Performance Implications of Multi-Chiplet Neural Processing Units on Autonomous Driving Perception
- Title(参考訳): マルチチップ型ニューラルプロセッシングユニットの自律走行知覚における性能への影響
- Authors: Mohanad Odema, Luke Chen, Hyoukjun Kwon, Mohammad Abdullah Al Faruque,
- Abstract要約: 本稿では,新しいチップレットベースのニューラル・プロセッシング・ユニットを用いて,制約のある自動車環境における車載AI知覚負荷を高速化する手法について検討する。
提案手法は, モノリシック加速器の設計に比べてスループットと処理エンジンの利用率が82%, 2.8倍向上することを実現する。
- 参考スコア(独自算出の注目度): 12.416683044819955
- License:
- Abstract: We study the application of emerging chiplet-based Neural Processing Units to accelerate vehicular AI perception workloads in constrained automotive settings. The motivation stems from how chiplets technology is becoming integral to emerging vehicular architectures, providing a cost-effective trade-off between performance, modularity, and customization; and from perception models being the most computationally demanding workloads in a autonomous driving system. Using the Tesla Autopilot perception pipeline as a case study, we first breakdown its constituent models and profile their performance on different chiplet accelerators. From the insights, we propose a novel scheduling strategy to efficiently deploy perception workloads on multi-chip AI accelerators. Our experiments using a standard DNN performance simulator, MAESTRO, show our approach realizes 82% and 2.8x increase in throughput and processing engines utilization compared to monolithic accelerator designs.
- Abstract(参考訳): 本稿では,新しいチップレットベースのニューラル・プロセッシング・ユニットを用いて,制約のある自動車環境における車載AI知覚負荷を高速化する手法について検討する。
このモチベーションは、チップレット技術が新たな車載アーキテクチャに不可欠なものになりつつあること、パフォーマンス、モジュラリティ、カスタマイズの間のコスト効率の高いトレードオフを提供すること、そして自律運転システムにおいて最も計算的に要求されるワークロードである知覚モデルに起因している。
Tesla Autopilotの認識パイプラインをケーススタディとして、まず構成モデルを分解し、異なるチップレットアクセラレータのパフォーマンスをプロファイルします。
そこで本研究では,マルチチップAIアクセラレータ上で知覚負荷を効率的に展開するための新しいスケジューリング手法を提案する。
標準的なDNN性能シミュレータMAESTROを用いた実験により,モノリシック・アクセルの設計と比較して,スループットと処理エンジンの利用率が82%,2.8倍向上することが確認された。
関連論文リスト
- Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
我々は,1つのGPU上で数時間のトレーニングをしながら,競争力の高いベンチマーク結果を実現する,新しい効率的な動き予測モデルを提案する。
その低推論レイテンシは、特に限られたコンピューティングリソースを持つ自律アプリケーションへのデプロイに適している。
論文 参考訳(メタデータ) (2024-09-24T14:58:27Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - A Car Model Identification System for Streamlining the Automobile Sales
Process [0.0]
本研究は,自動車モデルと画像の効率的な識別のための自動解法を提案する。
我々は、EfficientNet (V2 b2)アーキテクチャを使用した81.97%の顕著な精度を達成した。
トレーニングされたモデルは、情報抽出を自動化する可能性を提供し、自動車販売ウェブサイト全体でのユーザエクスペリエンスの向上を約束する。
論文 参考訳(メタデータ) (2023-10-19T23:36:17Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Penalty-Based Imitation Learning With Cross Semantics Generation Sensor
Fusion for Autonomous Driving [1.2749527861829049]
本稿では,複数の情報モダリティを統合するために,ペナルティに基づく模倣学習手法を提案する。
最新技術(SOTA)モデルであるInterFuserと比較して,運転スコアが12%以上増加していることが観察された。
本モデルでは, 推論速度を7倍に向上し, モデルサイズを約30%削減しながら, この性能向上を実現している。
論文 参考訳(メタデータ) (2023-03-21T14:29:52Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Cloud2Edge Elastic AI Framework for Prototyping and Deployment of AI
Inference Engines in Autonomous Vehicles [1.688204090869186]
本稿では、ディープラーニングモジュールに基づく自律運転アプリケーションのためのAI推論エンジンを開発するための新しいフレームワークを提案する。
我々は,ソフトウェア・イン・ザ・ループ(SiL)パラダイムに従って,クラウド上でプロトタイピングを行うAIコンポーネント開発サイクルに対して,シンプルでエレガントなソリューションを導入する。
提案フレームワークの有効性は,自律走行車用AI推論エンジンの2つの実例を用いて実証した。
論文 参考訳(メタデータ) (2020-09-23T09:23:29Z) - A Learned Performance Model for Tensor Processing Units [5.733911161090224]
本稿では,処理ユニット(TPU)インスタンス用のグラフプログラムのコーパスから,パフォーマンスモデルを学習する方法を示す。
学習したモデルでは,2つのタスクにおいて,高度に最適化された分析性能モデルよりも優れていることを示す。
オートチューニングは、TPUへのアクセスが制限されたり、高価な設定で、より高速なプログラムを見つけるのに役立つ。
論文 参考訳(メタデータ) (2020-08-03T17:24:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。