End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning
- URL: http://arxiv.org/abs/2411.16131v1
- Date: Mon, 25 Nov 2024 06:37:48 GMT
- Title: End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning
- Authors: Mahmoud M. Kishky, Hesham M. Eraqi, Khaled F. Elsayed,
- Abstract summary: This work introduces the conditional imitation co-learning (CIC) approach to address this issue.
We propose posing the steering regression problem as classification, we use a classification-regression hybrid loss to bridge the gap between regression and classification.
Our model is demonstrated to improve autonomous driving success rate in unseen environment by 62% on average compared to the CIL method.
- Score: 1.5020330976600735
- License:
- Abstract: Autonomous driving involves complex tasks such as data fusion, object and lane detection, behavior prediction, and path planning. As opposed to the modular approach which dedicates individual subsystems to tackle each of those tasks, the end-to-end approach treats the problem as a single learnable task using deep neural networks, reducing system complexity and minimizing dependency on heuristics. Conditional imitation learning (CIL) trains the end-to-end model to mimic a human expert considering the navigational commands guiding the vehicle to reach its destination, CIL adopts specialist network branches dedicated to learn the driving task for each navigational command. Nevertheless, the CIL model lacked generalization when deployed to unseen environments. This work introduces the conditional imitation co-learning (CIC) approach to address this issue by enabling the model to learn the relationships between CIL specialist branches via a co-learning matrix generated by gated hyperbolic tangent units (GTUs). Additionally, we propose posing the steering regression problem as classification, we use a classification-regression hybrid loss to bridge the gap between regression and classification, we also propose using co-existence probability to consider the spatial tendency between the steering classes. Our model is demonstrated to improve autonomous driving success rate in unseen environment by 62% on average compared to the CIL method.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
arXiv Detail & Related papers (2021-02-01T07:33:12Z) - Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships [46.965260791099986]
We show that explicitly inferring the latent state and encoding spatial-temporal relationships in a reinforcement learning framework can help address this difficulty.
We encode prior knowledge on the latent states of other drivers through a framework that combines the reinforcement learner with a supervised learner.
The proposed framework significantly improves performance in the context of navigating T-intersections compared with state-of-the-art baseline approaches.
arXiv Detail & Related papers (2020-11-09T08:55:12Z) - Interpretable End-to-end Urban Autonomous Driving with Latent Deep
Reinforcement Learning [32.97789225998642]
We propose an interpretable deep reinforcement learning method for end-to-end autonomous driving.
A sequential latent environment model is introduced and learned jointly with the reinforcement learning process.
Our method is able to provide a better explanation of how the car reasons about the driving environment.
arXiv Detail & Related papers (2020-01-23T18:36:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.