Image Generation Diversity Issues and How to Tame Them
- URL: http://arxiv.org/abs/2411.16171v1
- Date: Mon, 25 Nov 2024 08:00:21 GMT
- Title: Image Generation Diversity Issues and How to Tame Them
- Authors: Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, Bernhard Kainz,
- Abstract summary: Generative methods now produce outputs nearly indistinguishable from real data but often fail to fully capture the data distribution.
In this paper, we draw attention to the current lack of diversity in generative models and the inability of common metrics to measure this.
We achieve this by framing diversity as an image retrieval problem, where we measure how many real images can be retrieved using synthetic data as queries.
- Score: 8.858030256056095
- License:
- Abstract: Generative methods now produce outputs nearly indistinguishable from real data but often fail to fully capture the data distribution. Unlike quality issues, diversity limitations in generative models are hard to detect visually, requiring specific metrics for assessment. In this paper, we draw attention to the current lack of diversity in generative models and the inability of common metrics to measure this. We achieve this by framing diversity as an image retrieval problem, where we measure how many real images can be retrieved using synthetic data as queries. This yields the Image Retrieval Score (IRS), an interpretable, hyperparameter-free metric that quantifies the diversity of a generative model's output. IRS requires only a subset of synthetic samples and provides a statistical measure of confidence. Our experiments indicate that current feature extractors commonly used in generative model assessment are inadequate for evaluating diversity effectively. Consequently, we perform an extensive search for the best feature extractors to assess diversity. Evaluation reveals that current diffusion models converge to limited subsets of the real distribution, with no current state-of-the-art models superpassing 77% of the diversity of the training data. To address this limitation, we introduce Diversity-Aware Diffusion Models (DiADM), a novel approach that improves diversity of unconditional diffusion models without loss of image quality. We do this by disentangling diversity from image quality by using a diversity aware module that uses pseudo-unconditional features as input. We provide a Python package offering unified feature extraction and metric computation to further facilitate the evaluation of generative models https://github.com/MischaD/beyondfid.
Related papers
- GRADE: Quantifying Sample Diversity in Text-to-Image Models [66.12068246962762]
We propose GRADE: Granular Attribute Diversity Evaluation, an automatic method for quantifying sample diversity.
We measure the overall diversity of 12 T2I models using 400 concept-attribute pairs, revealing that all models display limited variation.
Our work proposes a modern, semantically-driven approach to measure sample diversity and highlights the stunning homogeneity in outputs by T2I models.
arXiv Detail & Related papers (2024-10-29T23:10:28Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Random Network Distillation as a Diversity Metric for Both Image and
Text Generation [62.13444904851029]
We develop a new diversity metric that can be applied to data, both synthetic and natural, of any type.
We validate and deploy this metric on both images and text.
arXiv Detail & Related papers (2020-10-13T22:03:52Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.