Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
- URL: http://arxiv.org/abs/2411.16189v1
- Date: Mon, 25 Nov 2024 08:42:33 GMT
- Title: Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
- Authors: Zhihua Duan, Jialin Wang,
- Abstract summary: Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks.
This paper proposes a new method that integrates different LLMs to expand the knowledge boundary.
Experiments on arithmetic datasets have validated the effectiveness of the method.
- Score: 1.4582633500696451
- License:
- Abstract: Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks, often resulting in hallucinations, which limit the practical application of LLMs. To alleviate this issue, this paper proposes a new method that integrates different LLMs to expand the knowledge boundary, reduce dependence on a single model, and promote in-depth debate among agents. The main contributions include: 1) Introducing third-party LLMs to adjust the attention weights of agents through uncertainty estimation and confidence analysis, optimizing consensus formation in multi-agent systems; 2) Experiments on arithmetic datasets have validated the effectiveness of the method, surpassing traditional multi-agent baselines. This research provides a new perspective for large models to alleviate hallucination phenomena when dealing with complex tasks.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
This paper presents the first systematic investigation of hallucinations in large multimodal models (LMMs)
Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations.
Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning.
arXiv Detail & Related papers (2024-10-16T17:59:02Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
This study evaluates Large Language Models (LLMs)-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks.
We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents.
arXiv Detail & Related papers (2023-10-16T07:51:19Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.