論文の概要: Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation
- arxiv url: http://arxiv.org/abs/2411.16207v1
- Date: Mon, 25 Nov 2024 09:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:57.105408
- Title: Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation
- Title(参考訳): 暗号化された画像はニューラルネットワークを訓練できるか? : 画像情報とランダム渦変換を調査
- Authors: XiaoKai Cao, WenJin Mo, ChangDong Wang, JianHuang Lai, Qiong Huang,
- Abstract要約: 画像変換時の情報内容の変化を評価するために,画像情報量を測定する新しい枠組みを構築した。
また,Random Vortex Transformationと呼ばれる新しい画像暗号化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 51.475827684468875
- License:
- Abstract: Vision is one of the essential sources through which humans acquire information. In this paper, we establish a novel framework for measuring image information content to evaluate the variation in information content during image transformations. Within this framework, we design a nonlinear function to calculate the neighboring information content of pixels at different distances, and then use this information to measure the overall information content of the image. Hence, we define a function to represent the variation in information content during image transformations. Additionally, we utilize this framework to prove the conclusion that swapping the positions of any two pixels reduces the image's information content. Furthermore, based on the aforementioned framework, we propose a novel image encryption algorithm called Random Vortex Transformation. This algorithm encrypts the image using random functions while preserving the neighboring information of the pixels. The encrypted images are difficult for the human eye to distinguish, yet they allow for direct training of the encrypted images using machine learning methods. Experimental verification demonstrates that training on the encrypted dataset using ResNet and Vision Transformers only results in a decrease in accuracy ranging from 0.3\% to 6.5\% compared to the original data, while ensuring the security of the data. Furthermore, there is a positive correlation between the rate of information loss in the images and the rate of accuracy loss, further supporting the validity of the proposed image information content measurement framework.
- Abstract(参考訳): 視覚は人間が情報を得るために必要な情報源の1つである。
本稿では,画像変換時の情報内容の変化を評価するために,画像情報量を測定する新しい枠組みを確立する。
この枠組みでは,異なる距離の画素の隣接情報量を計算する非線形関数を設計し,その情報を用いて画像の全体情報量を測定する。
したがって,画像変換時の情報内容の変化を表現する関数を定義する。
さらに、この枠組みを用いて、2つの画素の位置を切り替えることで、画像の情報内容が減少するという結論を導出する。
さらに、上記の枠組みに基づき、ランダム渦変換と呼ばれる新しい画像暗号化アルゴリズムを提案する。
このアルゴリズムは、画素の隣接情報を保存しながら、ランダム関数を用いて画像を暗号化する。
暗号化された画像は人間の目では識別が難しいが、機械学習を用いて暗号化された画像を直接訓練することができる。
実験による検証では、ResNetとVision Transformerを用いた暗号化データセットのトレーニングは、データのセキュリティを確保しながら、元のデータに比べて0.3\%から6.5\%の精度の低下にしかならないことが示されている。
さらに、画像中の情報損失率と精度損失率との間には正の相関関係があり、さらに提案した画像情報コンテンツ測定フレームワークの有効性を支持する。
関連論文リスト
- Enhancing Historical Image Retrieval with Compositional Cues [3.2276097734075426]
本稿では,この話題に計算美学,すなわち画像合成から重要な要素を紹介する。
CNNが抽出した合成関連情報を設計した検索モデルに明示的に統合することにより、画像の合成規則と意味情報の両方を考察する。
論文 参考訳(メタデータ) (2024-03-21T10:51:19Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
本稿では,ニューラルネットワークモデルによる顔画像の識別性を保ちながら,目に対して認識不能な顔画像を描画する,革新的な画像変換手法を提案する。
提案手法は、様々な人工知能アプリケーションにおいて、視覚データを歪曲し、派生した特徴を近接に保つために使用することができる。
同一の認識精度を維持しつつ、画像内容が70%以上変化する歪みを構築することができることを示す。
論文 参考訳(メタデータ) (2024-01-26T18:20:53Z) - On Mask-based Image Set Desensitization with Recognition Support [46.51027529020668]
マスクを用いた画像デセンシタイズ手法を提案する。
我々は,認識タスクの重要な情報を維持するために,解釈アルゴリズムを利用する。
また,マスク画像に基づく性能向上のためのモデル調整手法として,特徴選択マスクネットを提案する。
論文 参考訳(メタデータ) (2023-12-14T14:26:42Z) - EmbAu: A Novel Technique to Embed Audio Data Using Shuffled Frog Leaping
Algorithm [0.7673339435080445]
ステガノグラフィーアルゴリズムの目的は、データ暗号化のために機密情報のビットを隠蔽できるホストまたはカバー画像中の適切なピクセル位置を特定することである。
機密情報を統合し、画像の視覚的外観を維持する能力を向上させるために作業が行われている。
そこで我々は,Shuffled Frog Leaping Algorithm (SFLA) を用いて,被写体画像に機密情報を置く画素の順序を決定する。
論文 参考訳(メタデータ) (2023-12-13T17:34:08Z) - Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
本稿では,テキスト誘導側情報を用いた新しい深層画像圧縮手法を提案する。
具体的には,CLIPテキストエンコーダとSemantic-Spatial Awareブロックを用いてテキストと画像の特徴を融合する。
論文 参考訳(メタデータ) (2023-11-23T08:31:11Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
より良い開発AIシステムと、センシティブなトレーニングデータから距離を置くことの間の、ソフトウェアエンジニアに関する大きな対立が露呈している。
画像が暗号化され、人間に認識され、機械に認識される」という、効率的なプライバシー保護学習パラダイムを提案する。
提案手法は,機械が認識可能な情報を保存しながら,暗号化された画像が人間に認識されなくなることを保証できることを示す。
論文 参考訳(メタデータ) (2023-06-06T13:41:37Z) - Memory-Driven Text-to-Image Generation [126.58244124144827]
本稿では,メモリ駆動型半パラメトリックによるテキスト・ツー・イメージ生成手法を提案する。
非パラメトリック成分は、画像のトレーニングセットから構築された画像特徴のメモリバンクである。
パラメトリック成分は 生成的敵ネットワークです
論文 参考訳(メタデータ) (2022-08-15T06:32:57Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z) - Learning Transformation-Aware Embeddings for Image Forensics [15.484408315588569]
Image Provenance Analysisは、コンテンツを共有するさまざまな操作されたイメージバージョン間の関係を見つけることを目的としている。
証明分析のための主要なサブプロブレムの1つは、完全なコンテンツを共有したり、ほぼ重複している画像の編集順序である。
本稿では,1つの画像から生成した画像に対して,変換を通じて妥当な順序付けを行うための,新しい深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-13T22:01:24Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。