論文の概要: Steganographic Embeddings as an Effective Data Augmentation
- arxiv url: http://arxiv.org/abs/2502.15245v1
- Date: Fri, 21 Feb 2025 06:38:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:07:16.904599
- Title: Steganographic Embeddings as an Effective Data Augmentation
- Title(参考訳): 効果的なデータ拡張としてのステガノグラフィー埋め込み
- Authors: Nicholas DiSalvo,
- Abstract要約: Least Significant Bit (LSB) Steganographyは、秘密情報を画像に埋め込む暗号技術である。
LSBステガノグラフィーは、画像の k 個の最小のビットを秘密画像の k 個の最も重要なビットに置き換えることでこれを実現している。
CIFAR-10において,LSBステガノグラフィーが深層ニューラルネットワークのトレーニング効率を大幅に向上できることを示す実験結果を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Image Steganography is a cryptographic technique that embeds secret information into an image, ensuring the hidden data remains undetectable to the human eye while preserving the image's original visual integrity. Least Significant Bit (LSB) Steganography achieves this by replacing the k least significant bits of an image with the k most significant bits of a secret image, maintaining the appearance of the original image while simultaneously encoding the essential elements of the hidden data. In this work, we shift away from conventional applications of steganography in deep learning and explore its potential from a new angle. We present experimental results on CIFAR-10 showing that LSB Steganography, when used as a data augmentation strategy for downstream computer vision tasks such as image classification, can significantly improve the training efficiency of deep neural networks. It can also act as an implicit, uniformly discretized piecewise linear approximation of color augmentations such as (brightness, contrast, hue, and saturation), without introducing additional training overhead through a new joint image training regime that disregards the need for tuning sensitive augmentation hyperparameters.
- Abstract(参考訳): Image Steganography(画像ステガノグラフィー)は、秘密情報を画像に埋め込む暗号技術で、画像の本来の視覚的整合性を保ちながら、隠されたデータが人間の目では検出できないことを保証する。
Least Significant Bit (LSB) ステガノグラフィは、隠されたデータの本質的要素を同時に符号化しつつ、元の画像の外観を維持しながら、秘密画像の k 個の最小のビットを k 個の最も重要なビットに置き換えることで、これを実現できる。
本研究では,ディープラーニングにおけるステガノグラフィーの従来の応用から脱却し,その可能性を新たな角度から探究する。
CIFAR-10において、画像分類などの下流コンピュータビジョンタスクのデータ拡張戦略としてLSBステガノグラフィーを用いることで、ディープニューラルネットワークのトレーニング効率を大幅に向上できることを示す実験結果を示す。
明るさ、コントラスト、色調、彩度などの色増分を暗黙的に一様に離散的に線形に近似することも可能で、感度増強ハイパーパラメータの調整の必要性を無視した新しいジョイントイメージトレーニングシステムを通じて追加のトレーニングオーバーヘッドを導入することはない。
関連論文リスト
- Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation [51.475827684468875]
画像変換時の情報内容の変化を評価するために,画像情報量を測定する新しい枠組みを構築した。
また,Random Vortex Transformationと呼ばれる新しい画像暗号化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:14:53Z) - Natias: Neuron Attribution based Transferable Image Adversarial Steganography [62.906821876314275]
逆行性ステガナグラフィーは、ディープラーニングに基づくステガナリシスを効果的に欺く能力から、かなりの注目を集めている。
そこで我々は,Natias という新たな逆向きステガノグラフィー手法を提案する。
提案手法は既存の逆向きステガノグラフィーフレームワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-09-08T04:09:51Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Cover-separable Fixed Neural Network Steganography via Deep Generative Models [37.08937194546323]
我々は、Cs-FNNSという、カバー分離可能な固定ニューラルネットワークステレオグラフィーを提案する。
Cs-FNNSでは,シークレットデータを受容不能な摂動に直接エンコードするSPSアルゴリズムを提案する。
本稿では,視覚的品質と非検出性の観点から,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-16T05:47:06Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
本稿では,ニューラルネットワークモデルによる顔画像の識別性を保ちながら,目に対して認識不能な顔画像を描画する,革新的な画像変換手法を提案する。
提案手法は、様々な人工知能アプリケーションにおいて、視覚データを歪曲し、派生した特徴を近接に保つために使用することができる。
同一の認識精度を維持しつつ、画像内容が70%以上変化する歪みを構築することができることを示す。
論文 参考訳(メタデータ) (2024-01-26T18:20:53Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
より良い開発AIシステムと、センシティブなトレーニングデータから距離を置くことの間の、ソフトウェアエンジニアに関する大きな対立が露呈している。
画像が暗号化され、人間に認識され、機械に認識される」という、効率的なプライバシー保護学習パラダイムを提案する。
提案手法は,機械が認識可能な情報を保存しながら,暗号化された画像が人間に認識されなくなることを保証できることを示す。
論文 参考訳(メタデータ) (2023-06-06T13:41:37Z) - JPEG Steganalysis Based on Steganographic Feature Enhancement and Graph
Attention Learning [15.652077779677091]
JPEGステガナリシスのための表現学習アルゴリズムを提案する。
グラフ注意学習モジュールは、畳み込みニューラルネットワークの局所的特徴学習によるグローバルな特徴損失を回避するように設計されている。
本発明の特徴強化モジュールは、畳み込み層の積み重ねがステガノグラフ情報を弱めるのを防止するために適用される。
論文 参考訳(メタデータ) (2023-02-05T01:42:19Z) - Image Steganography based on Style Transfer [12.756859984638961]
スタイル転送に基づく画像ステガノグラフィーネットワークを提案する。
コンテンツイメージスタイルを変換しながら、秘密情報を埋め込みます。
潜時空間では、秘密情報をカバー画像の潜時表現に統合してステゴ画像を生成する。
論文 参考訳(メタデータ) (2022-03-09T02:58:29Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
本稿では, ホログラフィ変換を用いた画像検索手法を提案する。
また,ラベル付け手順を必要としないコントラスト学習によって誘導されるDNNのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-21T17:27:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。