論文の概要: SMGDiff: Soccer Motion Generation using diffusion probabilistic models
- arxiv url: http://arxiv.org/abs/2411.16216v1
- Date: Mon, 25 Nov 2024 09:25:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:26.559167
- Title: SMGDiff: Soccer Motion Generation using diffusion probabilistic models
- Title(参考訳): SMGDiff:拡散確率モデルを用いたサッカー運動生成
- Authors: Hongdi Yang, Chengyang Li, Zhenxuan Wu, Gaozheng Li, Jingya Wang, Jingyi Yu, Zhuo Su, Lan Xu,
- Abstract要約: サッカーは世界的に有名なスポーツであり、ビデオゲームやVR/ARで重要な応用がある。
本稿では,リアルタイムかつユーザ制御可能なサッカー動作を生成するための新しい2段階フレームワークであるSMGDiffを紹介する。
我々のキーとなる考え方は、リアルタイムキャラクタ制御を強力な拡散ベース生成モデルと統合し、高品質で多様な出力運動を保証することである。
- 参考スコア(独自算出の注目度): 44.54275548434197
- License:
- Abstract: Soccer is a globally renowned sport with significant applications in video games and VR/AR. However, generating realistic soccer motions remains challenging due to the intricate interactions between the human player and the ball. In this paper, we introduce SMGDiff, a novel two-stage framework for generating real-time and user-controllable soccer motions. Our key idea is to integrate real-time character control with a powerful diffusion-based generative model, ensuring high-quality and diverse output motion. In the first stage, we instantly transform coarse user controls into diverse global trajectories of the character. In the second stage, we employ a transformer-based autoregressive diffusion model to generate soccer motions based on trajectory conditioning. We further incorporate a contact guidance module during inference to optimize the contact details for realistic ball-foot interactions. Moreover, we contribute a large-scale soccer motion dataset consisting of over 1.08 million frames of diverse soccer motions. Extensive experiments demonstrate that our SMGDiff significantly outperforms existing methods in terms of motion quality and condition alignment.
- Abstract(参考訳): サッカーは世界的に有名なスポーツであり、ビデオゲームやVR/ARで重要な応用がある。
しかし、人間とボールの間の複雑な相互作用のため、現実的なサッカーの動きを生成することは依然として困難である。
本稿では,リアルタイムかつユーザ制御可能なサッカー動作を生成するための新しい2段階フレームワークであるSMGDiffを紹介する。
我々のキーとなる考え方は、リアルタイムキャラクタ制御を強力な拡散ベース生成モデルと統合し、高品質で多様な出力運動を保証することである。
最初の段階では、粗いユーザコントロールをキャラクタの多様なグローバルな軌跡に変換する。
第2段階では、トランスフォーマーに基づく自己回帰拡散モデルを用いて、軌道条件に基づくサッカーの動きを生成する。
さらに,現実的なボールフットインタラクションのためのコンタクト詳細を最適化するために,推論中にコンタクトガイダンスモジュールを組み込む。
さらに,多種多様なサッカー運動の1億800万フレーム以上からなる大規模サッカー運動データセットをコントリビュートする。
我々のSMGDiffは動作品質と条件整合性において既存の手法よりも優れていた。
関連論文リスト
- TranSPORTmer: A Holistic Approach to Trajectory Understanding in Multi-Agent Sports [28.32714256545306]
TranSportmerは、これらすべてのタスクに対処できる統合トランスフォーマーベースのフレームワークである。
時間的ダイナミクスと社会的相互作用を同変的に効果的に捉える。
プレイヤー予測、プレイヤー予測・インプット、ボール推論、ボールインプットにおいて、最先端のタスク固有モデルより優れている。
論文 参考訳(メタデータ) (2024-10-23T11:35:44Z) - ReinDiffuse: Crafting Physically Plausible Motions with Reinforced Diffusion Model [9.525806425270428]
本稿では、強化学習と運動拡散モデルを組み合わせることで、物理的に信頼できる人間の動きを生成するEmphReinDiffuseを提案する。
動作拡散モデルを用いてパラメータ化された動作分布を出力し、強化学習パラダイムに適合させる。
我々のアプローチは、HumanML3DとKIT-MLという2つの主要なデータセット上で、既存の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-09T16:24:11Z) - MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls [30.487510829107908]
プラグ・アンド・プレイ・マルチモーダル制御による全身動作を実現する統合拡散変換器であるMotionCraftを提案する。
我々のフレームワークは、テキスト・ツー・モーション・セマンティック・トレーニングの第1段階から始まる粗大な訓練戦略を採用している。
本稿では,SMPL-Xフォーマットを統一したマルチモーダル全体モーション生成ベンチマークMC-Benchを紹介する。
論文 参考訳(メタデータ) (2024-07-30T18:57:06Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
我々は,自己中心型RGBビジョンによる完全オンボード計算とセンシングにより,エンドツーエンドのロボットサッカーポリシーを訓練する。
本稿では,マルチエージェントロボットサッカーにおけるエンドツーエンドトレーニングの最初の実演を行う。
論文 参考訳(メタデータ) (2024-05-03T18:41:13Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) は、動き中心のマルチモーダルフレームワークであり、メインストリームのモーション生成タスクをジェネラリストモデルに統合する。
LMMは3つの原則的な側面からこれらの課題に取り組む。
論文 参考訳(メタデータ) (2024-04-01T17:55:11Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
テキスト・ツー・モーション生成のための優先中心運動離散拡散モデル(M2DM)を提案する。
M2DMは、コード崩壊に対処するために、グローバルな自己注意機構と正規化用語を組み込んでいる。
また、各動きトークンの重要度から決定される革新的なノイズスケジュールを用いた動き離散拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T10:40:16Z) - Human MotionFormer: Transferring Human Motions with Vision Transformers [73.48118882676276]
人間の動き伝達は、運動合成のためにターゲットの動的人物からソースの静的人物に動きを伝達することを目的としている。
本稿では,世界的および地域的認識を活用して,大規模かつ微妙な動きマッチングを捉える階層型ViTフレームワークであるHuman MotionFormerを提案する。
我々のHuman MotionFormerは、定性的かつ定量的に新しい最先端のパフォーマンスをセットしている。
論文 参考訳(メタデータ) (2023-02-22T11:42:44Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
大規模動作データセットから学習することで,異なるスタイルで数千の動作を習得する物理ベースのユニバーサルニューラルコントローラ(UniCon)を提案する。
UniConは、キーボード駆動制御をサポートし、ロコモーションとアクロバティックスキルの大きなプールから引き出されたモーションシーケンスを作成し、ビデオで撮影した人を物理ベースの仮想アバターにテレポートする。
論文 参考訳(メタデータ) (2020-11-30T18:51:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。