論文の概要: Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
- arxiv url: http://arxiv.org/abs/2411.16303v2
- Date: Wed, 05 Feb 2025 05:02:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:25:37.025010
- Title: Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
- Title(参考訳): フェデレーション学習の一般化を理解する:モデルの安定性と最適化のトレードオフ
- Authors: Dun Zeng, Zheshun Wu, Shiyu Liu, Yu Pan, Xiaoying Tang, Zenglin Xu,
- Abstract要約: Federated Learning(FL)は、複数のデバイスで機械学習モデルをトレーニングする分散学習アプローチである。
FLはデータの不均一性のためにしばしば課題に直面し、クライアント間の一貫性のないローカルオプティマに繋がる。
本稿ではアルゴリズムに依存した過剰リスク最小化のための革新的な一般化ダイナミクス解析フレームワークLibraを紹介する。
- 参考スコア(独自算出の注目度): 22.577751005038543
- License:
- Abstract: Federated Learning (FL) is a distributed learning approach that trains machine learning models across multiple devices while keeping their local data private. However, FL often faces challenges due to data heterogeneity, leading to inconsistent local optima among clients. These inconsistencies can cause unfavorable convergence behavior and generalization performance degradation. Existing studies mainly describe this issue through \textit{convergence analysis}, focusing on how well a model fits training data, or through \textit{algorithmic stability}, which examines the generalization gap. However, neither approach precisely captures the generalization performance of FL algorithms, especially for neural networks. This paper introduces an innovative generalization dynamics analysis framework, named as Libra, for algorithm-dependent excess risk minimization, highlighting the trade-offs between model stability and optimization. Through this framework, we show how the generalization of FL algorithms is affected by the interplay of algorithmic stability and optimization. This framework applies to standard federated optimization and its advanced variants, such as server momentum. Our findings suggest that larger local steps or momentum accelerate convergence but enlarge stability, while yielding a better minimum excess risk. These insights can guide the design of future algorithms to achieve stronger generalization.
- Abstract(参考訳): Federated Learning(FL)は、複数のデバイスで機械学習モデルをトレーニングし、ローカルデータをプライベートにしておく分散学習アプローチである。
しかし、FLはデータの不均一性のためにしばしば課題に直面し、クライアント間の一貫性のない局所最適化につながります。
これらの矛盾は、好ましくない収束挙動と一般化性能劣化を引き起こす。
既存の研究では、モデルがトレーニングデータにどの程度適合するかに焦点を当てた『textit{convergence analysis}』や、一般化ギャップを調べる『textit{algorithmic stability}』を通じてこの問題を主に記述している。
しかし、どちらの手法もFLアルゴリズム、特にニューラルネットワークの一般化性能を正確に捉えていない。
本稿では,モデル安定性と最適化のトレードオフを強調するアルゴリズム依存型過剰リスク最小化のための,Libraという名称の革新的な一般化ダイナミクス解析フレームワークを提案する。
この枠組みを通じて、FLアルゴリズムの一般化が、アルゴリズムの安定性と最適化の相互作用によってどのように影響を受けるかを示す。
このフレームワークは、標準的なフェデレートされた最適化と、サーバのモーメントのような高度なバリエーションに適用されます。
以上の結果から,より大きい局所ステップや運動量で収束が促進されるが,安定性が向上し,最小限の余剰リスクが増大することが示唆された。
これらの洞察は、より強力な一般化を達成するために将来のアルゴリズムの設計を導くことができる。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
分散最適化パラダイムとしてフェデレートラーニングが登場した。
本稿では,各クライアントが局所的に摂動勾配のステップを実行する,新しいフレームワークを提案する。
我々は,FedAvgと比較して,アルゴリズムの収束速度が30のグローバルラウンドのマージンとなることを示す。
論文 参考訳(メタデータ) (2024-10-07T23:14:05Z) - FedNAR: Federated Optimization with Normalized Annealing Regularization [54.42032094044368]
ウェイト崩壊の選択を探索し、ウェイト崩壊値が既存のFLアルゴリズムの収束に有意な影響を及ぼすことを確かめる。
我々は,既存のFLアルゴリズムにシームレスに統合可能なプラグインであるFederated Optimization with Normalized Annealing Regularization (FedNAR)を開発した。
論文 参考訳(メタデータ) (2023-10-04T21:11:40Z) - Understanding Generalization of Federated Learning via Stability:
Heterogeneity Matters [1.4502611532302039]
一般化性能は、現実世界のアプリケーションに適用された機械学習モデルを評価する上で重要な指標である。
一般化性能は、現実世界のアプリケーションに適用された機械学習モデルを評価する上で重要な指標である。
論文 参考訳(メタデータ) (2023-06-06T16:12:35Z) - On the generalization of learning algorithms that do not converge [54.122745736433856]
ディープラーニングの一般化解析は、訓練が一定の点に収束すると仮定するのが一般的である。
最近の結果は、実際には勾配降下に最適化されたディープニューラルネットワークの重みは、しばしば無限に振動することを示している。
論文 参考訳(メタデータ) (2022-08-16T21:22:34Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
論文 参考訳(メタデータ) (2022-07-14T22:46:43Z) - Generalized Federated Learning via Sharpness Aware Minimization [22.294290071999736]
シャープネス・アウェア・ミニミゼーション(SAM)の局所性に基づく汎用的で効果的なアルゴリズムである textttFedSAM を提案し,局所的およびグローバルなモデルをブリッジする運動量FLアルゴリズムを開発した。
実験により,提案アルゴリズムは既存のFL研究を著しく上回り,学習偏差を著しく低減した。
論文 参考訳(メタデータ) (2022-06-06T13:54:41Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
任意適応型オンラインモデルプルーニングを用いた異種FLアルゴリズムの一元化フレームワークを提案する。
特に、ある十分な条件下では、これらのアルゴリズムは一般的なスムーズなコスト関数に対して標準FLの定常点に収束する。
コンバージェンスに影響を与える2つの要因として,プルーニング誘導雑音と最小カバレッジ指数を照らす。
論文 参考訳(メタデータ) (2022-01-27T20:43:38Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。