論文の概要: Luminance Component Analysis for Exposure Correction
- arxiv url: http://arxiv.org/abs/2411.16325v1
- Date: Mon, 25 Nov 2024 12:21:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:57.957956
- Title: Luminance Component Analysis for Exposure Correction
- Title(参考訳): 露光補正のための輝度成分分析
- Authors: Jingchao Peng, Thomas Bashford-Rogers, Jingkun Chen, Haitao Zhao, Zhengwei Hu, Kurt Debattista,
- Abstract要約: 本稿では、発光成分分析(LCA)と呼ばれる露光補正法を提案する。
LCAは直交制約をU-Net構造に適用し、輝度関連および輝度非関連の特徴を分離する。
LCAは28.72 FPSの露光補正データセットにおいて最高のPSNR(21.33)とSSIM(0.88)を達成している。
- 参考スコア(独自算出の注目度): 8.855472314179528
- License:
- Abstract: Exposure correction methods aim to adjust the luminance while maintaining other luminance-unrelated information. However, current exposure correction methods have difficulty in fully separating luminance-related and luminance-unrelated components, leading to distortions in color, loss of detail, and requiring extra restoration procedures. Inspired by principal component analysis (PCA), this paper proposes an exposure correction method called luminance component analysis (LCA). LCA applies the orthogonal constraint to a U-Net structure to decouple luminance-related and luminance-unrelated features. With decoupled luminance-related features, LCA adjusts only the luminance-related components while keeping the luminance-unrelated components unchanged. To optimize the orthogonal constraint problem, LCA employs a geometric optimization algorithm, which converts the constrained problem in Euclidean space to an unconstrained problem in orthogonal Stiefel manifolds. Extensive experiments show that LCA can decouple the luminance feature from the RGB color space. Moreover, LCA achieves the best PSNR (21.33) and SSIM (0.88) in the exposure correction dataset with 28.72 FPS.
- Abstract(参考訳): 露光補正方法は、他の輝度関連情報を維持しながら輝度を調整することを目的としている。
しかし、現在の露光補正法は、輝度関連成分と輝度非関連成分を完全に分離することが困難であり、色調の歪み、詳細の喪失、余分な修復手順が要求される。
主成分分析 (PCA) に着想を得て, 発光成分分析 (LCA) と呼ばれる露出補正法を提案する。
LCAは直交制約をU-Net構造に適用し、輝度関連および輝度非関連の特徴を分離する。
分離された輝度関連特性により、LCAは輝度関連成分のみを調整し、輝度関連成分は変化しない。
直交制約問題を最適化するために、LCAはユークリッド空間の制約問題を直交スティフェル多様体の制約のない問題に変換する幾何最適化アルゴリズムを用いる。
広汎な実験により、LCAは輝度特性をRGB色空間から切り離すことができることが示された。
さらに、LCAは28.72FPSの露光補正データセットにおいて最高のPSNR(21.33)とSSIM(0.88)を達成する。
関連論文リスト
- Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
非視線画像(NLOS)は、その潜在的な応用により注目されている。
既存のNLOS再構成アプローチは、経験的物理的前提に依存して制約される。
本稿では,Learningable Path Compensation(LPC)とAdaptive Phasor Field(APF)の2つの主要な設計を含む,学習に基づく新しいソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-21T04:39:45Z) - MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
既存の作業では、照明マップを生成したり、照明パラメータを回帰することによって照明を推定する。
本稿では,SHとSGの相補的特性を利用して,より完全な照明表現を実現するジョイントモデルであるMixLightを提案する。
論文 参考訳(メタデータ) (2024-04-19T10:17:10Z) - LightOctree: Lightweight 3D Spatially-Coherent Indoor Lighting Estimation [4.079873017864992]
一つのRGB画像から空間的コヒーレントな室内照明を推定するための軽量な解を提案する。
本稿では,3次元空間コヒーレント照明を実現するために,ボクセルオクツリーを用いた照明推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-05T07:15:06Z) - Polarimetric Information for Multi-Modal 6D Pose Estimation of
Photometrically Challenging Objects with Limited Data [51.95347650131366]
6Dポーズ推定パイプラインは、RGBのみまたはRGB-Dデータに依存する。
このような制限を克服するために,補完分極情報を利用した教師付き学習ベース手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T10:56:00Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Deterministic Neural Illumination Mapping for Efficient Auto-White
Balance Correction [3.441021278275805]
オートホワイトバランス(オートホワイトバランス、Auto-white Balance、AWB)は、様々な照明シナリオにおいて正確で一貫した色補正のために、画像信号処理装置において重要な操作である。
本稿では,高解像度画像上での同等あるいは優れた性能で,少なくとも35倍高速な処理を実現する,新規で効率的なAWB補正手法を提案する。
論文 参考訳(メタデータ) (2023-08-07T22:44:26Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - An Adaptive Method for Camera Attribution under Complex Radial
Distortion Corrections [77.34726150561087]
インカメラまたはインカメラソフトウェア/アサートウェアは、PRNUベースのカメラ属性を妨げるために、画像の支持グリッドを変更する。
この問題に対処する既存のソリューションは、計算負荷を抑制するために、数変数でパラメータ化された半径変換を用いて補正を反転/推定しようとする。
本稿では,Adobe Lightroom, Photoshop, Gimp, PT-Lensといったサードパーティ製ソフトウェアが適用したような高度な補正を,同心円に分割することで実現する適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-28T08:44:00Z) - An Effective Image Restorer: Denoising and Luminance Adjustment for
Low-photon-count Imaging [6.358214877782411]
量子画像センサ(QIS)のイメージングシミュレーションによる低光子数条件下での原像復元
我々は,多層ピラミッド遮音ネットワーク (MPDNet) と輝度調整モジュール (LA) から構成される軽量なフレームワークを開発し,個別の遮音・照度向上を実現する。
画像復元装置は、雑音を抑え、輝度と色を効果的に回復することにより、様々な光子レベルの劣化画像に対して優れた性能が得られる。
論文 参考訳(メタデータ) (2021-10-29T12:16:30Z) - Two-dimensional Multi-fiber Spectrum Image Correction Based on Machine
Learning Techniques [8.754036933225398]
画像収差補正により空間変動PSFの問題を解決する新しい手法を提案する。
CCD画像収差が補正されると、畳み込みカーネルであるPSFを1つの空間不変PSFのみに近似することができる。
論文 参考訳(メタデータ) (2020-02-16T15:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。