論文の概要: Cluster-based human-in-the-loop strategy for improving machine learning-based circulating tumor cell detection in liquid biopsy
- arxiv url: http://arxiv.org/abs/2411.16332v1
- Date: Mon, 25 Nov 2024 12:26:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:18.881692
- Title: Cluster-based human-in-the-loop strategy for improving machine learning-based circulating tumor cell detection in liquid biopsy
- Title(参考訳): クラスタ・ベースのヒト・イン・ザ・ループ戦略による液体生検における機械学習による循環性腫瘍細胞検出の改善
- Authors: Hümeyra Husseini-Wüsthoff, Sabine Riethdorf, Andreas Schneeweiss, Andreas Trumpp, Klaus Pantel, Harriet Wikman, Maximilian Nielsen, René Werner,
- Abstract要約: 本研究では,機械学習によるCTC検出を改善するためのHuman-in-the-loop(HiL)戦略を提案する。
我々は,自己教師型ディープラーニングと従来のMLに基づく分類器を組み合わせて,人間専門家による新たな未ラベルトレーニングサンプルの反復的サンプリングとラベル付けを提案する。
転移性乳癌患者の液体生検データに対して,本手法の利点を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detection and differentiation of circulating tumor cells (CTCs) and non-CTCs in blood draws of cancer patients pose multiple challenges. While the gold standard relies on tedious manual evaluation of an automatically generated selection of images, machine learning (ML) techniques offer the potential to automate these processes. However, human assessment remains indispensable when the ML system arrives at uncertain or wrong decisions due to an insufficient set of labeled training data. This study introduces a human-in-the-loop (HiL) strategy for improving ML-based CTC detection. We combine self-supervised deep learning and a conventional ML-based classifier and propose iterative targeted sampling and labeling of new unlabeled training samples by human experts. The sampling strategy is based on the classification performance of local latent space clusters. The advantages of the proposed approach compared to naive random sampling are demonstrated for liquid biopsy data from patients with metastatic breast cancer.
- Abstract(参考訳): がん患者の血液中の腫瘍細胞(CTC)および非CTCの検出と分化は、複数の課題をもたらす。
金の標準は、自動生成された画像の選択の面倒な手作業による評価に依存しているが、機械学習(ML)技術はこれらのプロセスを自動化する可能性を秘めている。
しかし、ラベル付きトレーニングデータの不十分なセットのため、MLシステムが不確実または誤った判断に達した場合、人間による評価は依然として不可欠である。
本研究では,MLに基づくCTC検出を改善するためのHuman-in-the-loop(HiL)戦略を提案する。
自己教師型ディープラーニングと従来のMLベースの分類器を併用し,人間専門家による新たな未ラベルトレーニングサンプルの反復的サンプリングとラベル付けを提案する。
サンプリング戦略は,局所潜在空間クラスタの分類性能に基づく。
転移性乳癌患者の液体生検データに対して, 単純無作為なランダムサンプリングと比較して, 提案手法の利点が示された。
関連論文リスト
- Renal Cell Carcinoma subtyping: learning from multi-resolution localization [1.5728609542259502]
本研究では,機械学習診断ツールの自己指導型学習戦略について検討する。
ツールの精度を大幅に低下させることなく、アノテーション付きデータセットの必要性を減らすことを目指している。
腎癌サブタイプのためのスライド画像データセット全体に対して,本ツールの分類能力を実証し,本ソリューションを最先端の分類手法と比較した。
論文 参考訳(メタデータ) (2024-11-14T14:21:49Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
本研究は,約10,500個のWSIを用いて,最大規模のWSI南極サンプルデータセットを用いて行った。
提案手法は, パッチベースのタイルに対して, 異形成の重症度に基づくクラスを推定する。
病理学者が導入したドメイン知識を活用するために、解釈可能な混合スーパービジョンスキームで訓練されている。
論文 参考訳(メタデータ) (2023-01-06T17:10:32Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Oral cancer detection and interpretation: Deep multiple instance
learning versus conventional deep single instance learning [2.2612425542955292]
口腔癌(OC)診断の現在の医療基準は、口腔から採取した組織標本の組織学的検査である。
このアプローチを臨床ルーチンに導入するには、専門家の欠如や労働集約的な作業といった課題が伴う。
私たちは、患者1人あたりのラベルだけで癌を確実に検出できるAIベースの方法に興味を持っています。
論文 参考訳(メタデータ) (2022-02-03T15:04:26Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - A Role for Prior Knowledge in Statistical Classification of the
Transition from MCI to Alzheimer's Disease [0.0]
軽度認知障害(MCI)からアルツハイマー病(AD)への移行は臨床研究者にとって大きな関心事である。
分類のための機械学習(ML)アプローチの成長は、多くの臨床研究者にロジスティック回帰(LR)の価値を過小評価させる可能性がある
本稿では,ADに関わる脳領域の臨床的知識に基づいて,効率的な特徴選択を利用する方法を提案する。
論文 参考訳(メタデータ) (2020-11-28T18:15:24Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。