Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks
- URL: http://arxiv.org/abs/2411.16354v2
- Date: Fri, 07 Feb 2025 13:28:59 GMT
- Title: Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks
- Authors: Hao Ai, Yu-xi Liu,
- Abstract summary: complexity of simulating quantum systems poses challenge to computer-aided design of quantum chips.
We propose a parameter designing algorithm for large-scale superconducting quantum circuits.
Our algorithm achieves notable advantages in efficiency, effectiveness, and scalability.
- Score: 1.6442870218029524
- License:
- Abstract: To demonstrate supremacy of quantum computing, increasingly large-scale superconducting quantum computing chips are being designed and fabricated. However, the complexity of simulating quantum systems poses a significant challenge to computer-aided design of quantum chips, especially for large-scale chips. Harnessing the scalability of graph neural networks (GNNs), we here propose a parameter designing algorithm for large-scale superconducting quantum circuits. The algorithm depends on the so-called 'three-stair scaling' mechanism, which comprises two neural-network models: an evaluator supervisedly trained on small-scale circuits for applying to medium-scale circuits, and a designer unsupervisedly trained on medium-scale circuits for applying to large-scale ones. We demonstrate our algorithm in mitigating quantum crosstalk errors. Frequencies for both single- and two-qubit gates (corresponding to the parameters of nodes and edges) are considered simultaneously. Numerical results indicate that the well-trained designer achieves notable advantages in efficiency, effectiveness, and scalability. For example, for large-scale superconducting quantum circuits consisting of around 870 qubits, our GNNs-based algorithm achieves 51% of the errors produced by the state-of-the-art algorithm, with a time reduction from 90 min to 27 sec. Overall, a better-performing and more scalable algorithm for designing parameters of superconducting quantum chips is proposed, which initially demonstrates the advantages of applying GNNs in superconducting quantum chips.
Related papers
- Embedding of Tree Tensor Networks into Shallow Quantum Circuits [0.0]
This study proposes a method to embed Tree Networks (TTNs) into shallow quantum circuits.
Our numerical results show that embedding TTNs provides better initial quantum circuits than Matrix Product States (MPS)
This study is expected to extend the application of VQAs to two-dimensional systems and those with long-range correlations.
arXiv Detail & Related papers (2025-01-31T02:38:17Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Distributed Quantum Neural Networks via Partitioned Features Encoding [0.0]
Quantum neural networks are expected to be a promising application in near-term quantum computing.
We propose to make a prediction by approximating outputs of a large circuit using multiple small circuits.
Our proposed method not only achieved highly accurate predictions for a large dataset but also reduced the hardware requirements for each quantum neural network.
arXiv Detail & Related papers (2023-12-21T08:21:44Z) - GSQAS: Graph Self-supervised Quantum Architecture Search [0.18899300124593643]
Existing Quantum Architecture Search (QAS) algorithms require to evaluate a large number of quantum circuits during the search process.
We propose GSQAS, a graph self-supervised QAS, which trains a predictor based on self-supervised learning.
GSQAS outperforms the state-of-the-art predictor-based QAS, achieving better performance with fewer labeled circuits.
arXiv Detail & Related papers (2023-03-22T08:35:28Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum error reduction with deep neural network applied at the
post-processing stage [0.0]
We propose a method for digital quantum simulation characterized by the periodic structure of quantum circuits consisting of Trotter steps.
A key ingredient of our approach is that it does not require any data from a classical simulator at the training stage.
The network is trained to transform data obtained from quantum hardware with artificially increased Trotter steps number.
arXiv Detail & Related papers (2021-05-17T13:04:26Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.