論文の概要: Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings
- arxiv url: http://arxiv.org/abs/2404.02738v1
- Date: Wed, 3 Apr 2024 13:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:11:28.124156
- Title: Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings
- Title(参考訳): 資源制限設定におけるMRI画像分割のための適応親和性に基づく一般化
- Authors: Eddardaa B. Loussaief, Mohammed Ayad, Domenc Puig, Hatem A. Rashwan,
- Abstract要約: 本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
- 参考スコア(独自算出の注目度): 1.5703963908242198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The joint utilization of diverse data sources for medical imaging segmentation has emerged as a crucial area of research, aiming to address challenges such as data heterogeneity, domain shift, and data quality discrepancies. Integrating information from multiple data domains has shown promise in improving model generalizability and adaptability. However, this approach often demands substantial computational resources, hindering its practicality. In response, knowledge distillation (KD) has garnered attention as a solution. KD involves training light-weight models to emulate the behavior of more resource-intensive models, thereby mitigating the computational burden while maintaining performance. This paper addresses the pressing need to develop a lightweight and generalizable model for medical imaging segmentation that can effectively handle data integration challenges. Our proposed approach introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation through a gram matrix that can capture the style representation across features. This methodology empowers the student model to accurately replicate the feature representations of the teacher model, facilitating robust performance even in the face of domain shift and data heterogeneity. To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data. The results demonstrate a significant enhancement in segmentation performance using lightweight networks. Notably, our method achieves this improvement while reducing both inference time and storage usage, rendering it a practical and efficient solution for real-time medical imaging segmentation.
- Abstract(参考訳): 医用画像セグメンテーションのための多様なデータソースの共同利用は、データ不均一性、ドメインシフト、データ品質の相違といった課題に対処することを目的として、重要な研究領域として浮上している。
複数のデータドメインからの情報を統合することは、モデルの一般化性と適応性を改善することを約束している。
しかし、このアプローチは、しばしばかなりの計算資源を必要とし、その実用性を妨げている。
これに対し、知識蒸留(KD)は解決策として注目されている。
KDは、よりリソース集約的なモデルの振舞いをエミュレートするために軽量モデルを訓練することで、性能を維持しながら計算負担を軽減する。
本稿では、医用画像分割のための軽量で一般化可能なモデルを開発し、データ統合の課題を効果的に処理する必要性に対処する。
提案手法では, 適応親和性に基づく, カーネルベースの蒸留を, 機能間のスタイル表現をキャプチャ可能なグラム行列を通じてシームレスに組み合わせた, 新たな関係ベース知識フレームワークを提案する。
この手法は、教師モデルの特徴表現を正確に再現し、ドメインシフトやデータの異質性に直面しても堅牢なパフォーマンスを促進する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
その結果,軽量ネットワークを用いたセグメンテーション性能の大幅な向上が示された。
特に,本手法は,推測時間とストレージ使用量の両方を削減し,リアルタイムな医用画像分割のための実用的で効率的な解であることを示す。
関連論文リスト
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
神経ネットワークに基づくシステムの臨床実践への統合は、ドメインの一般化と堅牢性に関連する課題によって制限される。
我々は、12のデータセットと9つの画像モダリティをカバーするMedMNIST+コレクションに基づくベンチマークデータセットであるMedMNIST-Cを作成し、オープンソース化した。
論文 参考訳(メタデータ) (2024-06-25T13:20:39Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
本稿では,学習データの利用効率を向上させるために,逆データ拡張手法を提案する。
本稿では,データ拡張モデルとセグメンテーションネットワークを協調的に最適化する汎用的なタスク駆動学習フレームワークを提案する。
提案した逆データ拡張は生成ネットワークに依存しず,汎用セグメンテーションネットワークのプラグインモジュールとして使用できる。
論文 参考訳(メタデータ) (2021-08-07T11:32:37Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Modality Compensation Network: Cross-Modal Adaptation for Action
Recognition [77.24983234113957]
異なるモダリティの関係を探索するためのモダリティ補償ネットワーク(MCN)を提案する。
我々のモデルは、適応表現学習を実現するために、モーダリティ適応ブロックによって、ソースおよび補助モーダリティからのデータをブリッジする。
実験の結果,MCNは4つの広く使用されている行動認識ベンチマークにおいて,最先端のアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-01-31T04:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。