Measuring entanglement without local addressing via spiral quantum state tomography
- URL: http://arxiv.org/abs/2411.16603v1
- Date: Mon, 25 Nov 2024 17:37:29 GMT
- Title: Measuring entanglement without local addressing via spiral quantum state tomography
- Authors: Giacomo Marmorini, Takeshi Fukuhara, Daisuke Yamamoto,
- Abstract summary: Quantum state tomography serves as a key tool for identifying quantum states generated in quantum computers and simulators.
Here, we present a tomography scheme that scales far more efficiently and eliminates the need for local addressing of single constituents.
The results of the numerical simulations demonstrate a high degree of tomographic efficiency and accuracy.
- Score: 0.0
- License:
- Abstract: Quantum state tomography serves as a key tool for identifying quantum states generated in quantum computers and simulators, typically involving local operations on individual particles or qubits to enable measurements in various bases. However, this approach requires an exponentially larger number of measurement setups as quantum platforms grow in size, highlighting the necessity of more scalable methods to efficiently perform quantum state estimation. Here, we present a tomography scheme that scales far more efficiently and, remarkably, eliminates the need for local addressing of single constituents before measurements. Inspired by the "spin-spiral" structure in magnetic materials, our scheme combines a series of measurement setups, each with different spiraling patterns, with compressed sensing techniques. The results of the numerical simulations demonstrate a high degree of tomographic efficiency and accuracy. Additionally, we show how this method is suitable for the measurement of specific entanglement properties of interesting quantum many-body states, such as entanglement entropy, in various realistic experimental conditions. This method offers a positive outlook across a wide range of quantum platforms, including those in which precise individual operations are challenging, such as optical lattice systems.
Related papers
- Learning topological states from randomized measurements using variational tensor network tomography [0.4818215922729967]
Learning faithful representations of quantum states is crucial to fully characterizing the variety of many-body states created on quantum processors.
We implement and study a tomographic method that combines variational optimization on tensor networks with randomized measurement techniques.
We demonstrate its ability to learn the ground state of the surface code Hamiltonian as well as an experimentally realizable quantum spin liquid state.
arXiv Detail & Related papers (2024-05-31T21:05:43Z) - Cyclic measurements and simplified quantum state tomography [0.0]
We introduce the notion of cyclic tight measurements, that allow us to perform full quantum state tomography.
This type of measurements significantly simplifies the complexity of the experimental setup required to retrieve the quantum state of a physical system.
arXiv Detail & Related papers (2024-04-29T16:41:17Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum State Tomography with Locally Purified Density Operators and Local Measurements [17.38734393793605]
An efficient representation of quantum states enables realizing quantum state tomography with minimal measurements.
We propose an alternative approach to state tomography that uses tensor network representations of mixed states through locally purified density operators.
Our study opens avenues in quantum state tomography for two-dimensional systems using tensor network formalism.
arXiv Detail & Related papers (2023-07-31T03:14:31Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Efficient measurement schemes for bosonic systems [1.4781921087738965]
Boson is one of the most basic particles and preserves the commutation relation.
We numerically test the schemes for measuring nuclei vibrations simulated using a discrete quantum computer.
arXiv Detail & Related papers (2022-10-24T20:14:23Z) - Adaptive Quantum State Tomography with Active Learning [0.0]
We propose and implement an efficient scheme for quantum state tomography using active learning.
We apply the scheme to reconstruct different multi-qubit states with varying degree of entanglement as well as to ground states of the XXZ model in 1D and a kinetically constrained spin chain.
Our scheme is highly relevant to gain physical insights in quantum many-body systems as well as for benchmarking and characterizing quantum devices.
arXiv Detail & Related papers (2022-03-29T16:23:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.